References
- Basseville, M., Benveniste, A., Goursat, M. and Mevel, L. (2007), "In-flight vibration monitoring of aeronautical structures", IEEE Control Syst. Mag., 27(5), 27-42. https://doi.org/10.1109/MCS.2007.904652
- Beck, J., Au, S. and Vanik, M. (1999), "A bayesian probabilistic approach to structural health monitoring", American Control Conference Proceedings, 2, 1119-1123.
- Berg, G. and Housner, G.W. (1961), "Integrated velocity and displacement of strong earthquake ground motion", B. Seismol. Soc. Am., 51(2), 175-189.
- Boore, D.M. and Bommer, J.J. (2005), "Processing of strong-motion accelerograms: needs, options and consequences", Soil Dyn. Earthq. Eng., 25(2), 93-115. https://doi.org/10.1016/j.soildyn.2004.10.007
- Bucharles, A. and Vacher, P. (2002), "Flexible aircraft model identification for control law design", Aerosp. Sci. Technol., 6(8), 591-598. https://doi.org/10.1016/S1270-9638(02)01197-5
- Casciati, F., Saleh, R.A. and Fuggini, C. (2009), "GPS-based SHM of a tall building: torsional effects", Proceedings of the 7th International Workshop on Structural Health Monitoring, 9-11 September 2009, Stanford University, Stanford.
- Chatzi, E.N. and Smyth, A.W. (2009), "The unscented kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing", Struct. Control Health Monit., 16(1), 99-123. https://doi.org/10.1002/stc.290
- Chatzi, E.N., Smyth, A.W. and Masri, S.F. (2010), "Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty", Struct. Saf., 32(5), 326 -337. https://doi.org/10.1016/j.strusafe.2010.03.008
- Chen, T., Morris, J. and Martin, E. (2005), "Particle Filters for state and parameter estimation in batch processes", J. Process Contr., 15(6), 665-673. https://doi.org/10.1016/j.jprocont.2005.01.001
- Doebling, S.W., Farrar, C.R., Prime, M. and Shevitz, D.W. (2009), Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review, Technical Report, Los Alamos National Lab, NM (United States).
- Faravelli, L., Casciati, S. and Fuggini, C. (2009), "Full-scale experiment using GPS sensors for dynamic tests", Proceedings of the XIX Congress AIMETA, September 14-17, 2009, Ancona.
- Faravelli, L., Ubertini, F. and Fuggini, C. (2010), "Subspace Identification of the Guangzhou new TV Tower", Proceedings of the 5th World Conference on Structural Control and Monitoring, July 12-14, 2010, Shinjuku, Tokyo.
- Faravelli, L., Ubertini, F. and Fuggini, C. (2010), "System identification toward FEM updating of a super high-rise buildings", Proceedings of the 5th European Workshop on Structural Health Monitoring, June 28 July 2, 2010, Sorrento, Italy.
- Faravelli, L., Ubertini, F. and Fuggini, C. (2011), "System identification of a super high-rise building via a stochastic subspace approach", Smart Struct. Syst., 7 (2), 133-152. https://doi.org/10.12989/sss.2011.7.2.133
- Fraraccio, G.A., Brugger, A. and Betti, R. (2008), "Identification and damage detection in structures subjected to base excitation", Experimental Mech., 48(4), 521-528. https://doi.org/10.1007/s11340-008-9124-6
- Fuggini, C. (2009), Using Satellites Systems for Structural Monitoring: Accuracy, Uncertainty and Reliability, PhD Dissertation, University of Pavia, Pavia, Italy.
- Gao, Y., Spencer, B.F. and Ruiz-Sandoval, M. (2006), "Distributed computing strategy for structural health monitoring", Struct. Control Health Monit., 13(1), 488-507. https://doi.org/10.1002/stc.117
- Hong, A., Ubertini, F. and Betti, R. (2013), "New stochastic subspace approach for system identification and its application to long-span bridges", J. Eng. Mech. - ASCE, 139(6), 724-736. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000524
- Julier, S.J. and Uhlmann, J.K. (1997), "A new extension of the Kalman Filter to nonlinear systems", Proceedings of AeroSense: The 11th Int. Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando.
- Kim, J., Kim, K. and Sohn, H. (2014), "Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements", Mech. Syst. Signal Pr., 42(12), 194-205. https://doi.org/10.1016/j.ymssp.2013.09.014
- Lin, J.W., Betti, R., Smyth, A.W. and Longman, R.W. (2001), "On-line identification of non-linear hysteretic structural systems using a variable trace approach", Earthq. Eng. Struct. D., 30(9), 1279-303. https://doi.org/10.1002/eqe.63
- Lourens, E., Papadimitriou, C., Gillijns, S., Reynders, E., De Roeck, G. and Lombaert, G. (2012), "Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors", Mech. Syst. Signal Pr., 29, 310-327. https://doi.org/10.1016/j.ymssp.2012.01.011
- Mani, G., Quinn, D.D. and Kasarda, M.E.F. (2006), "Structural Health Monitoring of Rotordynamic Systems by Wavelet Analysis", ASME Conference Proceedings 2006 (4773X), 685-692.
- Mariani, S. and Corigliano, A. (2005), "Impact induced composite delamination: state and parameter identification via joint and dual extended kalman filters", Comput. Method. Appl. M., 194(50-52), 5242-5272. https://doi.org/10.1016/j.cma.2005.01.007
- Maskell, S. and Gordon, N.A. (2001), "Tutorial on particle filters for on-line nonlinear/non-gaussian bayesian tracking", IEEE T. Signal Proces., 50(2), 174-188.
- Moschas, F. and Stiros, S. (2012), "Phase effect in time-stamped accelerometer measurements: an experimental approach", Int. J. Metrol. Quality Eng., 3, 161-167. https://doi.org/10.1051/ijmqe/2012025
- Moaveni, B., He, X., Conte, J.P. and Restrepo, J.I. (2010), "Damage identification study of a seven-story full-scale building slice tested on the UCSD-NEES shake table", Struct. Saf., 32(5), 347-356 https://doi.org/10.1016/j.strusafe.2010.03.006
- Naets, F., Pastorino, R., Cuadrado, J. and Desmet, W. (2013), "Online state and input force estimation for multibody models employing extended kalman filtering", Multibody Syst. Dyn., 1-20
- Papadimitriou, C., Fritzen, C., Kraemer, P. and Ntotsios, E. (2011), "Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors using kalman filtering", Struct. Control Health Monit., 18(5), 554-573. https://doi.org/10.1002/stc.395
- Park, J.W., Sim, S.H. and Jung, H.J. (2013), "Displacement estimation using multimetric data fusion", IEEE/ASME T. Mechatronics, 18(6), 1675-1682. https://doi.org/10.1109/TMECH.2013.2275187
- Psimoulis, P.A. and Stiros, S.C. (2008), "Experimental assessment of the accuracy of GPS and RTS for the determination of the parameters of oscillation of major structures", Comput.-Aided Civil Infrastruct. E., 23(5), 389-403. https://doi.org/10.1111/j.1467-8667.2008.00547.x
- Rajamani, M.R. (2007), Data-based Techniques to Improve State Estimation in Model Predictive Control, PhD Thesis, University of Wisconsin-Madison, October 2007
- Rajamani, M.R. and Rawlings, J.B. (2009), "Estimation of the disturbance structure from data using semidefinite programming and optimal weighting", Automatica, 45,142-148. https://doi.org/10.1016/j.automatica.2008.05.032
- Rauch, H.E., Striebel, C.T. and Tung, F. (1965), "Maximum likelihood estimates of linear dynamic systems", J. Am. Inst. Aeronaut. Astronaut., 3(8), 1445-50. https://doi.org/10.2514/3.3166
- Ristic, B., Arulampalam, S. and Gordon, N. (2004), "Beyond the Kalman filter: Particle filters for tracking applications", Artech house.
- Sarkka, S. (2008), "Unscented Rauch-Tung-Striebel smoother", IEEE T.Automat. Control., 53(3), 845-549. https://doi.org/10.1109/TAC.2008.919531
- Smyth, A. and Wu, M. (2007), "Multi-rate kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring", Mech. Syst. Signal Pr., 21(2), 706-723. https://doi.org/10.1016/j.ymssp.2006.03.005
- Stiros, S., Psimoulis, P. and Kokkinou, E. (2008), "Errors introduced by fluctuations in the sampling rate of automatically recording instruments: Experimental and theoretical approach", J. Surv. Eng. - ASCE, 134(3), 89-93. https://doi.org/10.1061/(ASCE)0733-9453(2008)134:3(89)
- Stiros, S.C. (2008), "Errors in velocities and displacements deduced from accelerographs: An approach based on the theory of error propagation", Soil Dynam. Earthq. Eng., 28(5), 415-420. https://doi.org/10.1016/j.soildyn.2007.07.004
- Terejanu, G., Singh, T. and Scott, P. (2007), "Unscented kalman filter/smoother for a CBRN puff-based dispersion model", Proceedings of the 10th International Conference on Information Fusion, 9-12 July.
- Wan, E. and Van Der Merwe, R. (2000), "The unscented kalman filter for nonlinear estimation", Adaptive Systems for Signal Processing, Communications, and Control Symposium, AS-SPCC, IEEE, Lake Louise, Alberta, Canada. Oct 2000, 153-8.
- Yuen, K.V. and Katafygiotis, L.S. (2006), "Substructure identification and health monitoring using noisy response measurements only", Comput. - Aided Civil Infrastruct. E., 21(4), 280-291. https://doi.org/10.1111/j.1467-8667.2006.00435.x
Cited by
- Identification of Wind Loads and Estimation of Structural Responses of Super-Tall Buildings by an Inverse Method vol.31, pp.12, 2016, https://doi.org/10.1111/mice.12241
- Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach vol.86, 2017, https://doi.org/10.1016/j.ymssp.2016.10.009
- Applications of structural health monitoring technology in Asia vol.16, pp.3, 2017, https://doi.org/10.1177/1475921716653278
- Experimental validation of the Kalman-type filters for online and real-time state and input estimation vol.23, pp.15, 2017, https://doi.org/10.1177/1077546315617672
- The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation vol.16, pp.12, 2016, https://doi.org/10.3390/s16071103
- Evaluation of the dynamic characteristics of a super tall building using data from ambient vibration and shake table tests by a Bayesian approach 2017, https://doi.org/10.1002/stc.2121
- A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/7691721
- Cost–Benefit Optimization of Structural Health Monitoring Sensor Networks vol.18, pp.7, 2018, https://doi.org/10.3390/s18072174
- Optimal sensor placement methods and metrics – comparison and implementation on a timber frame structure vol.14, pp.7, 2018, https://doi.org/10.1080/15732479.2018.1438483
- A dual Kalman filter approach for state estimation via output-only acceleration measurements vol.60, pp.None, 2015, https://doi.org/10.1016/j.ymssp.2015.02.001
- Guided wave analysis of air-coupled impact-echo in concrete slab vol.20, pp.3, 2017, https://doi.org/10.12989/cac.2017.20.3.257
- KF-Based Multiscale Response Reconstruction under Unknown Inputs with Data Fusion of Multitype Observations vol.32, pp.4, 2015, https://doi.org/10.1061/(asce)as.1943-5525.0001031
- A hybrid identification method on butterfly optimization and differential evolution algorithm vol.26, pp.3, 2015, https://doi.org/10.12989/sss.2020.26.3.345
- A two-stage Kalman filter for the identification of structural parameters with unknown loads vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.693
- Kalman Filter-Based Fusion of Collocated Acceleration, GNSS and Rotation Data for 6C Motion Tracking vol.21, pp.4, 2021, https://doi.org/10.3390/s21041543
- Two-stage Bayesian system identification using Gaussian discrepancy model vol.20, pp.2, 2015, https://doi.org/10.1177/1475921720933523
- Real-time simultaneous input-state-parameter estimation with modulated colored noise excitation vol.165, pp.None, 2022, https://doi.org/10.1016/j.ymssp.2021.108378
- Displacement Estimation of a Nonlinear SDOF System under Seismic Excitation Using an Adaptive Kalman Filter vol.8, pp.1, 2015, https://doi.org/10.1061/ajrua6.0001213