References
- Abu-Farsakh, M., Chen, Q. and Yoon, S. (2008), "Use of reinforced soil foundation (RSF) to support shallow foundation", Louisiana Transportation Research Center (LTRC), Louisiana Department of Transportation and Development (LADOTD), Report No. FHWA/LA.07/424; Baton Rouge, LA, USA,195 p.
- American Society for Testing and Materials (2009), "Standard Test Method for Repetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for Use in Evaluation and Design of Airport and Highway Pavements", ASTM, D 1195-09.
- American Society for Testing and Materials (2007), "Standard Test Method for Particle-Size Analysis of Soils", ASTM, D422-07.
- American Society for Testing and Materials (2009), "Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports", ASTM, D2940-09.
- American Society for Testing and Materials (2011), "Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)", ASTM, D 2487-11.
- American Society for Testing and Materials (2012), "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort", ASTM, D 1557-12.
- American Association of State Highway and Transportation Officials (AASHTO) T 221-90 (2010), Repetitive static plate load tests of soils and flexible pavement components for use in evaluation and design of airport and highway pavements.
- Bathurst, R.J., Nernheim, A., Walters, D.L., Allen, T.M., Burgess, P. and Saunders, D.D. (2009), "Influence of reinforcement stiffness and compaction on the performance of four geosynthetic - reinforced soil walls", Geosynth. Int., 16(1), 43-49. https://doi.org/10.1680/gein.2009.16.1.43
- Boushehrian, A.H., Hataf, N. and Ghahramani, A. (2011), "Modeling of the cyclic behavior of shallow foundations resting on geomesh and grid-anchor reinforced sand", Geotext. Geomembr., 29(3), 242-248. https://doi.org/10.1016/j.geotexmem.2010.11.008
- Brito, L.A.T., Dawson, A.R. and Kolisoja, P.J. (2009), "Analytical evaluation of unbound granular layers in regard to permanent deformation", Proceedings of the 8th International on the Bearing Capacity of Roads, Railways, and Airfields (BCR2A'09), Champaign, IL, USA, pp. 187-196.
- Chen, R.H., Huang, Y.W. and Huang, F.C. (2013), "Confinement effect of geocells on sand samples under triaxial compression", Geotext. Geomembr., 37(2), 35-44. https://doi.org/10.1016/j.geotexmem.2013.01.004
- Collin, J.G., Kinney, T.C. and Fu, X. (1996), "Full scale highway load test of flexible pavement systems with geogrid reinforced base courses", Geosynth. Int., 3(4), 537-549. https://doi.org/10.1680/gein.3.0074
- Dash, S.K., Krishnaswamy, N.R. and Rajagopal, K. (2001), "Bearing capacity of strip footings supported on geocell-reinforced sand", Geotext. Geomembr., 19(4), 235-256. https://doi.org/10.1016/S0266-1144(01)00006-1
- Dash, S.K., Sireesh, S. and Sitharam, T.G. (2003), "Model studies on circular footing supported on geocell reinforced sand underlain by soft clay", Geotext. Geomembr., 21(4), 197-219. https://doi.org/10.1016/S0266-1144(03)00017-7
- Dash, S.K., Rajagopal, K. and Krishnaswamy, N.R. (2007), "Behaviour of geocell reinforced sand beds under strip loading", Can. Geotech. J., 44(7), 905-916. https://doi.org/10.1139/t07-035
- Deb, K. and Konai, S. (2014), "Bearing capacity of geotextile-reinforced sand with varying fine fraction", Geomech. Eng., Int. J., 6(1), 33-45. https://doi.org/10.12989/gae.2014.6.1.033
- El Sawwaf, M.A. (2007), "Behaviour of strip footing on geogrid-reinforced sand over a soft clay slope", Geotext. Geomembr., 25(1), 50-60. https://doi.org/10.1016/j.geotexmem.2006.06.001
- Ghosh, A., Ghosh, A. and Bera, A.K. (2005), "Bearing capacity of square footing on pond ash reinforced with jute-geotextile", Geotext. Geomembr., 23(2), 144-173. https://doi.org/10.1016/j.geotexmem.2004.07.002
- Hufenus, R., Rueegger, R., Banjac, R., Mayor, P., Springman, S.M. and Bronnimann, R. (2006), "Full-scale field tests on geosynthetic reinforced unpaved on soft subgrade", Geotext. Geomembr., 24(1), 21-37. https://doi.org/10.1016/j.geotexmem.2005.06.002
- Keskin, M.S. (2015), "Model studies of uplift capacity behavior of square plate anchors in geogrid-reinforced sand", Geomech. Eng., Int. J., 8(4), 595-613. https://doi.org/10.12989/gae.2015.8.4.595
- Kim, I.T. and Tutumluer, E. (2005), "Unbound aggregate rutting models for stress rotations and effects of moving wheel loads", Transportation Research Record, J. Transport. Res. Board, 1913, 41-49. https://doi.org/10.3141/1913-05
- Koerner, R.M. (2012), Designing with Geosynthetics, (6th Edition), Volume 1, Xlibris Corporation, USA.
- Leshchinsky, B. and Ling, H.I. (2013), "Numerical modeling of behavior of railway ballasted structure with geocell confinement", Geotext. Geomembr., 36(1), 33-43. https://doi.org/10.1016/j.geotexmem.2012.10.006
- Madhavi Latha, G. (2011), "Design of geocell reinforcement for supporting embankments on soft ground", Geomech. Eng., Int. J., 3(2), 117-130. https://doi.org/10.12989/gae.2011.3.2.117
- Madhavi Latha, G. and Rajagopal, K. (2007), "Parametric finite element analysis of Geocell Supported Embankments", Can. Geotech. J., 44(8), 917-927. https://doi.org/10.1139/T07-039
- Moghaddas Tafreshi, S.N. and Dawson, A.R. (2010a), "Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement", Geotext. Geomembr., 28(1), 72-84. https://doi.org/10.1016/j.geotexmem.2009.09.003
- Moghaddas Tafreshi, S.N. and Dawson, A.R. (2010b), "Behaviour of footings on reinforced sand subjected to repeated loading - Comparing use of 3D and planar geotextile", Geotext. Geomembr., 28(5), 434-447. https://doi.org/10.1016/j.geotexmem.2009.12.007
- Moghaddas Tafreshi, S.N. and Dawson, A.R. (2012), "A comparison of static and cyclic loading responses of foundations on geocell-reinforced sand", Geotext. Geomembr., 32(5), 55-68. https://doi.org/10.1016/j.geotexmem.2011.12.003
- Niroumand, H. and Anuar Kassim, K. (2013), "A review on uplift response of symmetrical anchor plates embedded in reinforced sand", Geomech. Eng., Int. J., 5(3), 187-194. https://doi.org/10.12989/gae.2013.5.3.187
- Patra, C.R., Das, B.M. and Atalar, C. (2005), "Bearing capacity of embedded strip foundation on geogrid reinforced sand", Geotext. Geomembr., 23(5), 454-462. https://doi.org/10.1016/j.geotexmem.2005.02.001
- Pokharel, S.K., Han, J., Leshchinsky, D., Parsons, R.L. and Halahmi, I. (2010), "Investigation of factors influencing behavior of single geocell-reinforced bases under static loading", Geotext. Geomembr., 28(6), 570-578. https://doi.org/10.1016/j.geotexmem.2010.06.002
- Rajagopal, K., Krishanaswamy, N.R. and Latha, G.M. (1999), "Behaviour of sand confined with single and multiple geocells", Geotext. Geomembr., 17(3), 171-184. https://doi.org/10.1016/S0266-1144(98)00034-X
- Raymond, G.P. (2002), "Reinforced ballast behaviour subjected to repeated load", Geotext. Geomembr., 20(1), 39-61. https://doi.org/10.1016/S0266-1144(01)00024-3
- Sitharam, T.G. and Sireesh, S. (2005), "Behavior of embedded footings supported on geogrid cell reinforced foundation beds", Geotech. Test. J., 28(5), 452-463.
- Sitharam, T.G., Sireesh, S. and Dash, S.K. (2007), "Performance of surface footing on geocell-reinforced soft clay beds", Geotech. Geol. Eng., 25(5), 509-524. https://doi.org/10.1007/s10706-007-9125-8
- Sireesh, S., Sailesh, P., Sitharam, T.G. and Anand, J.P. (2013), "Numerical analysis of geocell reinforced ballast overlying soft clay subgrade", Geomech. Eng., Int. J., 5(3), 263-281. https://doi.org/10.12989/gae.2013.5.3.263
- Sireesh, S., Sitharam, T.G. and Dash, S.K. (2009), "Bearing capacity of circular footing on geocell-sand mattress overlying clay bed with void", Geotext. Geomembr., 27(2), 89-98. https://doi.org/10.1016/j.geotexmem.2008.09.005
- Tandel, Y.K., Solanki, C.H. and Desai, A.K. (2014), "Field behaviour geotextile reinforced sand column", Geomech. Eng., Int. J., 6(2), 195-211. https://doi.org/10.12989/gae.2014.6.2.195
- Tanyu, B.F., Aydilek, A.H., Lau, A.W., Edil, T.B. and Benson, C.H. (2013), "Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades", Geosynth. Int., 20(2), 47-61. https://doi.org/10.1680/gein.13.00001
- Tavakoli Mehrjardi, Gh., Moghaddas Tafreshi, S.N. and Dawson, A.R. (2012), "Combined use of geocell reinforcement and rubber-soil mixtures to improve performance of buried pipes", Geotext. Geomembr., 34, 116-130. https://doi.org/10.1016/j.geotexmem.2012.05.004
- Thakur, J.K., Han, J., Pokharel, S.K. and Parsons, R.L. (2012), "Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading", Geotext. Geomembr., 35, 14-24. https://doi.org/10.1016/j.geotexmem.2012.06.004
- Yang, X., Han, J., Pokharel, S.K., Manandhar, C., Parsons, R.L., Leshchinsky, D. and Halahmi, I. (2012), "Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases", Geotext. Geomembr., 32, 95-103. https://doi.org/10.1016/j.geotexmem.2011.10.004
- Yoon, Y.W., Cheon, S.H. and Kang, D.S. (2004), "Bearing capacity and settlement of tire-reinforced sands", Geotext. Geomembr., 22, 439-453. https://doi.org/10.1016/j.geotexmem.2003.12.002
- Yoon, Y.W., Heo, S.B. and Kim, S.K. (2008), "Geotechnical performance of waste tires for soil reinforcement from chamber tests", Geotext. Geomembr., 26(1), 100-107. https://doi.org/10.1016/j.geotexmem.2006.10.004
- Zhang, L., Zhao, M., Shi, C. and Zhao, H. (2010), "Bearing capacity of geocell reinforcement in embankment engineering", Geotext. Geomembr., 28(5), 475-482. https://doi.org/10.1016/j.geotexmem.2009.12.011
- Zhou, H. and Wen, X. (2008), "Model studies on geogrid- or geocell-reinforced sand cushion on soft soil", Geotext. Geomembr., 26(3), 231-238. https://doi.org/10.1016/j.geotexmem.2007.10.002
Cited by
- Protection of Buried Pipe under Repeated Loading by Geocell Reinforcement vol.95, 2017, https://doi.org/10.1088/1755-1315/95/2/022030
- Cyclic Response of Footing with Embedment Depth on Multi-Layered Geocell-Reinforced Bed vol.44, 2016, https://doi.org/10.1088/1755-1315/44/2/022015
- Laboratory Investigation of Buried Pipes Using Geogrid and EPS Geofoam Block vol.95, 2017, https://doi.org/10.1088/1755-1315/95/2/022002
- Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation vol.57, pp.1, 2016, https://doi.org/10.12989/sem.2016.57.1.105
- Evaluating the Applicability of Geocell-Reinforced Dredged Sand Using Plate and Wheel Load Testing vol.6, pp.1, 2019, https://doi.org/10.1007/s40515-018-00067-2
- Square footing on geocell reinforced cohesionless soils vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.641
- Performance Evaluation of Pavements Constructed on EPS Geofoam Backfill Using Repeated Plate Load vol.221, pp.None, 2015, https://doi.org/10.1088/1755-1315/221/1/012007
- Load-bearing characteristics of square footing on geogrid-reinforced sand subjected to repeated loading vol.27, pp.3, 2015, https://doi.org/10.1007/s11771-020-4341-y
- The Role of Expanded Polystyrene and Geocell in Enhancing the Behavior of Buried HDPE Pipes under Trench Loading Using Numerical Analyses vol.10, pp.7, 2015, https://doi.org/10.3390/geosciences10070251
- Assessment the Role of Expanded-Polysterene Block and Grogrid Layer on Behavior of Buried Pipeline vol.609, pp.None, 2015, https://doi.org/10.1088/1755-1315/609/1/012014
- Numerical investigation of geocell reinforced slopes behavior by considering geocell geometry effect vol.24, pp.6, 2015, https://doi.org/10.12989/gae.2021.24.6.589
- Investigation of Mechanical and Hydrologic Characteristics of Porous Asphalt Pavement with a Geocell Composite vol.14, pp.12, 2015, https://doi.org/10.3390/ma14123165