DOI QR코드

DOI QR Code

Bioavailability of Organic Selenium in Selenium-Deficient Rats

셀레늄 결핍식이를 먹인 쥐를 대상으로 유기셀레늄의 생체이용률에 대한 연구

  • Jung, Eun Young (Department of Home Economic Education, Jeonju University)
  • 정은영 (전주대학교 가정교육과)
  • Received : 2015.02.09
  • Accepted : 2015.04.10
  • Published : 2015.09.30

Abstract

We examined the effects of selenium-binding peptide from sericin hydrolysates on the bioavailability of selenium-deficient rats. Three-week-old male rats were fed a selenium-deficient diet for 4 weeks while the normal control group was fed a normal diet. The selenium-deficient rats were divided into three groups: no treatment, organic selenium (OS), and inorganic selenium (IS). After selenium supplementation for 4 weeks, the level of serum glutathione reduced form in rats treated with organic selenium was significantly higher than that of inorganic selenium. Selenium retention rate also increased significantly in the organic selenium group compared to the inorganic selenium group [selenium deficient diet (DD)+OS 50.25% vs. DD+IS 17.04%, P<0.05]. In conclusion, binding of selenium to peptides from sericin hydrolysates seems to improve its bioavailability, and can hasten a cure for selenium deficiency in experimental rats.

본 연구는 세리신을 이용해 만든 유기셀레늄의 생체이용률을 알아보고자 하였다. 그 결과를 요약하면 다음과 같다. 항산화지표인 환원형 글루타티온은 셀레늄 처치로 인해 증가 되었는데 유기셀레늄에 의한 증가는 무기셀레늄에 비해 큰 경향이었으며, 또한 혈중 과산화 지질도 유기셀레늄이 무기셀레늄에 비해 낮은 값을 나타내어 유기셀레늄은 무기셀레늄에 비해 항산화력 향상에 더 기여하는 것으로 나타났다. 셀레늄 결핍식이로 인해 저하된 셀레늄 흡수율과 보유율은 셀레늄 처치로 증가되는데, 특히 유기셀레늄 처치로 인한 흡수율과 보유율이 높아 생체 내 이용률은 증대될 것으로 사료되며 이는 항산화력 향상에 영향을 미칠 것으로 사료된다. 혈청과 간의 셀레늄의 농도는 셀레늄 처치로 유의하게 증가되는데 셀레늄 형태 중 유기셀레늄에 의한 증가가 가장 컸으나 통계적으로 유의한 수준은 아니었다. 결론적으로 본 연구의 결과 무기질을 함유한 펩타이드는 무기질의 생체이용률을 증가시키는 것으로 나타났는데 세리신을 이용한 유기화 형태로 섭취될 경우 혈액과 장기의 침착뿐 아니라 흡수율과 보유율 증가에 관여하여 각 무기질의 효능을 증진시키는 것으로 나타났다.

Keywords

References

  1. Gmoshinskii IV, Mazo VK. 2006. Mineral substance in human nutrition. Selenium: absorption and bioavailability. Vopr Pitan 75: 15-21.
  2. Powell JJ, Jugdaohsingh R, Thompson RP. 1999. The regulation of mineral absorption in the gastrointestinal tract. Proc Nutr Soc 58: 147-153. https://doi.org/10.1079/PNS19990020
  3. Scott D, McLean AF. 1981. Control of mineral absorption in ruminants. Proc Nutr Soc 40: 257-266. https://doi.org/10.1079/PNS19810041
  4. Cho HJ, Lee HS, Jung EY, Park SY, Lim WT, Lee JY, Yeon SH, Lee JC, Suh HJ. 2010. Manufacturing of iron binding peptide using sericin hydrolysate and its bioavailability in iron deficient rat. J Korean Soc Food Sci Nutr 39: 1446-1451. https://doi.org/10.3746/jkfn.2010.39.10.1446
  5. Cho HJ, Lee HS, Jung EY, Suh HJ. 2010. Manufacturing of calcium binding peptide using sericin hydrolysate and its bioavailability in calcium deficient rat. J East Asian Soc Dietary Life 20: 680-686.
  6. Tondapu P, Provost D, Adams-Huet B, Sims T, Chang C, Sakhaee K. 2009. Comparison of the absorption of calcium carbonate and calcium citrate after Roux-en-Y gastric bypass. Obes Surg 19: 1256-1261. https://doi.org/10.1007/s11695-009-9850-6
  7. Katayama H, Issiki M, Yoshitomi H. 2000. Application of fibroin in controlled release tablets containing theophylline. Biol Pharm Bull 23: 1229-1234. https://doi.org/10.1248/bpb.23.1229
  8. Kapolna E, Fodor P. 2007. Bioavailability of selenium from selenium-enriched green onions (Allium fistulosum) and chives (Allium schoenoprasum) after 'in vitro' gastrointestinal digestion. Int J Food Sci Nutr 58: 282-296. https://doi.org/10.1080/09637480601154335
  9. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. 2008. Spider silks and their applications. Trends Biotechnol 26:244-251. https://doi.org/10.1016/j.tibtech.2008.02.006
  10. Sasaki S, Nakajima E, Fujii-Kuriyama Y, Tashiro Y. 1981. Intracellular transport and secretion of fibroin in the posterior silk gland of the silkworm Bombyx mori. J Cell Sci 50:19-44.
  11. Tietze F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27: 502-522. https://doi.org/10.1016/0003-2697(69)90064-5
  12. Quintanilha AT, Packer L, Davies JM, Racanelli TL, Davies KJ. 1982. Membrane effects of vitamin E deficiency: bioenergetic and surface charge density studies of skeletal muscle and liver mitochondria. Ann NY Acad Sci 393: 32-47. https://doi.org/10.1111/j.1749-6632.1982.tb31230.x
  13. Koszta G, Fulesdi B. 2013. Significance of selenium in the pathogenesis and therapy of cardiovascular diseases and those requiring intensive care. Orv Hetil 154: 1621-1627. https://doi.org/10.1556/OH.2013.29727
  14. Ghaffarian-Bahraman A, Shahroozian I, Jafari A, Ghazi-Khansari M. 2014. Protective effect of magnesium and selenium on cadmium toxicity in the isolated perfused rat liver system. Acta Med Iran 52: 872-878.
  15. Meplan C, Hesketh J. 2014. Selenium and cancer: a story that should not be forgotten-insights from genomics. Cancer Treat Res 159: 145-166. https://doi.org/10.1007/978-3-642-38007-5_9
  16. Gunter SA, Beck PA, Hallford DM. 2013. Effects of supplementary selenium source on the blood parameters in beef cows and their nursing calves. Biol Trace Elem Res 152:204-211. https://doi.org/10.1007/s12011-013-9620-0
  17. Ortman K, Pehrson B. 1999. Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J Anim Sci 77: 3365-3370.
  18. Salman S, Dinse D, Khol-Parisini A, Schafft H, Lahrssen-Wiederholt M, Schreiner M, Scharek-Tedin L, Zentek J. 2013. Colostrum and milk selenium, antioxidative capacity and immune status of dairy cows fed sodium selenite or selenium yeast. Arch Anim Nutr 67: 48-61. https://doi.org/10.1080/1745039X.2012.755327
  19. Faye B, Saleh SK, Konuspayeva G, Musaad A, Bengoumi M, Seboussi R. 2014. Comparative effect of organic and inorganic selenium supplementation on selenium status in camel. J King Saud Univ 26: 149-158. https://doi.org/10.1016/j.jksus.2013.10.003
  20. Pavlata L, Misurova L, Pechova A, Dvorak R. 2011. The effect of inorganic and organically bound forms of selenium on glutathione peroxidase activity in the blood of goats. Vet Med 56: 75-81.
  21. Windisch W. 2002. Interaction of chemical species with biological regulation of the metabolism of essential trace elements. Anal Bioanal Chem 372: 421-425. https://doi.org/10.1007/s00216-001-1117-6
  22. Schrauzer GN. 2003. The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 47: 73-112. https://doi.org/10.1016/S1043-4526(03)47002-2