DOI QR코드

DOI QR Code

Study on Electrode Design to Increase the Cell Efficiencies and Electrical Properties of Dye-sensitized Solar Cells

텍스타일형 염료감응 태양전지의 효율증가를 위한 전극설계 및 전기적 특성분석에 관한 연구

  • Lee, Hye Mi (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Yun, Min Ju (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
  • 이혜미 (부산대학교 유기소재시스템공학과) ;
  • 윤민주 (부산대학교 유기소재시스템공학과) ;
  • 김한성 (부산대학교 유기소재시스템공학과)
  • Received : 2015.06.16
  • Accepted : 2015.07.27
  • Published : 2015.08.31

Abstract

To enhance the flexibility and lightweightness of photovoltaic devices, we investigated the effect of titanium mesh as a photoelectrode for flexible dye-sensitized solar cells (DSSCs). We proposed the use of a pressing process to create the titanium mesh to increase the amount of incident light. The DSSCs with titanium mesh as the photoelectrode exhibited an energy conversion efficiency of 3.25% (at 1 sun, AM 1.5). To improve the performance of the DSSCs, we proposed double-layer structured counter electrodes, with one layer placed on the top layer of the photoelectrode and the other layer placed on the bottom layer of the photoelectrode. The double-layer structure resulted in an energy conversion efficiency of 3.04% (at 1 sun, AM 1.5).

Keywords

References

  1. 이준신, 김경해, "Solar Cell Engineering", 도서출판그린, 2005.
  2. Y. J. Shin, "Semiconducting Electrode Materials for Dye-Sensitized Solar Cell", Polym. Sci. Technol., 2006, 17, 446-455.
  3. B. O'Regan and M. Gratzel, "A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal $TiO_2$ Films", Nature, 1991, 353, 737-740. https://doi.org/10.1038/353737a0
  4. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazzeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Gratzel, "Porphyrin-sensitized Solar Cells with Cobalt (II/III)-based Redox Electrolyte Exceed 12 Percent Efficiency", Science, 2011, 334, 629-634. https://doi.org/10.1126/science.1209688
  5. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel, "Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) Charge-transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes", J. Am. Chem. Soc., 1993, 115, 6382-6390. https://doi.org/10.1021/ja00067a063
  6. M. Durr, A. Bamedi, A. Yasuda, and G. Nelles, "Tandem Dyesensitized Solar Cell for Improved Power Conversion Efficiencies", Phys. Lett., 2004, 84, 3397-3399.
  7. S. Zhang, J. Chunyan, B. Zhuqiang, L. Runhua, X. Xinyuan, Y. Daqin, Z. Luhui, H. Chunhui, and C. Anyuan, "Single-wire Dye-sensitized Solar Cells Wrapped by Carbon Nanotube Film Electrodes", Nano Lett., 2011, 11, 3383-3387. https://doi.org/10.1021/nl201790w
  8. T. Loewenstein, R. Melanie, M. Markus, S. Kerstin, Y. Zimmermann, A. Neudeck, S. Sensfuss, and D. Schettwein, "Textile-Compatible Substrate Electrodes with Electrodeposited ZnO-A New Pathway to Textile-Based Photovoltaics", Chem. Phys. Chem., 2010, 11, 783-788. https://doi.org/10.1002/cphc.200900428
  9. K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grimes, "Highly-ordered $TiO_2$ Nanotube Arrays Up to $220{\mu}m$ in Length: Use in Water Photoelectrolysis and Dye-sensitized Solar Cells", Nanotechnol., 2007, 065707-065717.
  10. G. K. Mor, O. K. Varghese, M. Paulose, and C. A. Grimes, "Transparent Highly Ordered $TiO_2$ Nanotube Arrays via Anodization of Titanium Thin Films", Adv. Funct. Mater., 2005, 15, 1291-1296. https://doi.org/10.1002/adfm.200500096
  11. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, "Enhanced Charge-collection Efficiencies and Light Scattering in Dyesensitized Solar Cells Using Oriented $TiO_2$ Nanotubes Arrays", Nano Lett., 2007, 7, 69-74. https://doi.org/10.1021/nl062000o