DOI QR코드

DOI QR Code

Dendrosomal Curcumin Inhibits Metastatic Potential of Human SW480 Colon Cancer Cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 Gene Expression

  • Esmatabadi, Mohammad Javad Dehghan (Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Farhangi, Baharak (Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Safari, Zahra (Genetics Group, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences) ;
  • Kazerooni, Hanif (Chemical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Shirzad, Hadi (Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University) ;
  • Zolghadr, Fatemeh (Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Sadeghizadeh, Majid (Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University)
  • Published : 2015.04.03

Abstract

Colon cancer is one of the leading causes of cancer-associated death worldwide. The prognosis for advanced colorectal cancers remains dismal, mainly due to the propensity for metastatic progression. Accordingly, there is a need for effective anti-metastasis therapeutic agents. Since a great body of research has indicated anticancer effects for curcumin, we investigated the effects of dendrosomal curcumin (DNC) on cellular migration and adhesion of human SW480 cells and possible molecular mechanisms involved. Different methods were applied in this study including MTT, Scratch and adhesion assays as well as real-time PCR and transwell chamber assays. Based on the results obtained, DNC inhibits metastasis by decreasing Hef 1, Zeb 1 and Claudin 1 mRNA levels and can reduce SW480 cell proliferation with $IC_{50}$values of 15.9, 11.6 and $7.64{\mu}M$ at 24, 48 and 72h post-treatment. Thus it might be considered as a safe formulation for therapeutic purpose in colorectal cancer cases.

Keywords

References

  1. Adachi Y, Takeuchi T, Nagayama T, et al (2009). Zeb1-mediated T-cadherin repression increases the invasive potential of gallbladder cancer. FEBS Lett, 583, 430-6. https://doi.org/10.1016/j.febslet.2008.12.042
  2. Aggarwal S, Ichikawa H, Takada Y, et al (2006). Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol, 69, 195-206.
  3. Aigner K, Dampier B, Descovich L, et al (2007). The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene, 26, 6979-88. https://doi.org/10.1038/sj.onc.1210508
  4. Alizadeh AM, Khaniki M, Azizian S, et al (2012). Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier-curcumin. Eur J Pharmacol, 689, 226-32. https://doi.org/10.1016/j.ejphar.2012.06.016
  5. Amar S, Ashok S, Punita D (2011). Claudin-1 Up-regulates the repressor ZEB-1 to inhibit ecadherin expression in colon cancer cells. Gastroenterology, 141, 2140-53. https://doi.org/10.1053/j.gastro.2011.08.038
  6. Ammon HP, Wahl MA (1991). Pharmacology of curcuma longa. Planta Med, 57, 1-7. https://doi.org/10.1055/s-2006-960004
  7. Anand P, Kunnumakkara AB, Newman RA, et al (2007). Bioavailability of curcumin: problems and promises. Mol Pharm, 4, 807-18. https://doi.org/10.1021/mp700113r
  8. Anand P, Thomas SG, Kunnumakkara AB (2008). Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol, 76, 1590-611. https://doi.org/10.1016/j.bcp.2008.08.008
  9. Babaei E, Sadeghizadeh M, Hassan ZM, et al (2012). Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Intern Immunopharmacol, 12, 226-34. https://doi.org/10.1016/j.intimp.2011.11.015
  10. Bharat BA, Shishir S, Yasunari T, et al (2005). Curcumin suppresses the paclitaxel-induced nuclear factor metastasis of human breast cancer in nude mice kb pathway in breast cancer cells and inhibits lung. Clin Cancer Res, 11, 7490-8. https://doi.org/10.1158/1078-0432.CCR-05-1192
  11. Bora-Tatar G, Dayangac-Erden D, Demir AS, et al (2009). Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorg Med Chem, 17, 5219-28. https://doi.org/10.1016/j.bmc.2009.05.042
  12. Brabletz S, Brabletz T (2010). The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO Rep, 11, 670-7. https://doi.org/10.1038/embor.2010.117
  13. Chen HC (2005). Boyden chamber assay. Methods Mol Biol, 294, 15-22.
  14. Chen ML, Liang LS, Wang XK (2012). miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis, 29, 457-69. https://doi.org/10.1007/s10585-012-9463-7
  15. Conroy T, Paillot B, Francois E, et al (2005). Irinotecan plus oxaliplatin and leucovorin-modulated fluorouracil in advanced pancreatic cancer-a groupe tumeurs digestives of the federation nationale des centres de lutte contre le cancer study. J Clin Oncol, 23, 1228-36. https://doi.org/10.1200/JCO.2005.06.050
  16. Das T, Sa G, Saha B, et al (2010). Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol Cell Biochem, 336, 85-95. https://doi.org/10.1007/s11010-009-0269-0
  17. Dastpeyman M, Motamed N, Azadmanesh K, et al (2012). Inhibition of silibinin on migration and adhesion capacity of human highly metastatic breast cancer cell line, MDA-MB-231, by evaluation of beta1-integrin and downstream molecules, Cdc42, Raf-1 and D4GDI. Med Oncol, 29, 2512-8. https://doi.org/10.1007/s12032-011-0113-8
  18. Ferlay J, Shin HR, Bray F, et al (2010). GLOBOCAN 2008 v2.0, Cancer incidence and mortality worldwide: IARC cancerbase No. 10 [Internet]. Lyon, France.
  19. Ferrari E, Pignedoli F, Imbriano C (2011). Newly synthesized curcumin derivatives: crosstalk between chemico-physical properties and biological activity. J Med Chem, 54, 8066-77. https://doi.org/10.1021/jm200872q
  20. Gemmill RM, Roche J, Potiron VA, et al (2011). ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett, 300, 66-78. https://doi.org/10.1016/j.canlet.2010.09.007
  21. Gou M, Men K, Shi H, et al (2011). Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale, 3, 1558-67. https://doi.org/10.1039/c0nr00758g
  22. Graham TR, Zhau HE, Odero-Marah VA, et al (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res, 68, 2479-88. https://doi.org/10.1158/0008-5472.CAN-07-2559
  23. Gulhati P, Bowen KA, Liu J, et al (2011). mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res, 71, 3246-56. https://doi.org/10.1158/0008-5472.CAN-10-4058
  24. Gupta IR, Ryan AK (2010). Claudins: unlocking the code to tight junction function during embryogenesis and in disease. Clin Genet, 77, 314-25. https://doi.org/10.1111/j.1399-0004.2010.01397.x
  25. Hlubek F, Spaderna S, Jung A, et al (2004). Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer, 108, 321-6. https://doi.org/10.1002/ijc.11522
  26. Hong IK (2008). Curcumin inhibition of integrin (a6b4)-dependent breast cancer cell motility and invasion. Cancer Prev Res, 1, 385-91. https://doi.org/10.1158/1940-6207.CAPR-08-0087
  27. Hong JH, Ahn KS, Bae E, et al (2006). The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis, 9, 147-52. https://doi.org/10.1038/sj.pcan.4500856
  28. Huber MA, Kraut N, Beug H (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol, 17, 548-58. https://doi.org/10.1016/j.ceb.2005.08.001
  29. Huei WC (2008). Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res, 68, 7428-38. https://doi.org/10.1158/0008-5472.CAN-07-6734
  30. Hynes RO (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673-87. https://doi.org/10.1016/S0092-8674(02)00971-6
  31. Izumchenko E, Singh MK, Plotnikova OV, et al (2009). NEDD9 promotes oncogenic signaling in mammary tumor development. Cancer Res, 69, 7198-206. https://doi.org/10.1158/0008-5472.CAN-09-0795
  32. Jeffery GH, Henry LS, Charles ER (2009). Curcumin blocks CCL2 induced adhesion, motility and invasion, in part, through down-regulation of CCL2 expression and proteolytic activity. Int J Oncol, 34, 1319-27.
  33. Ji H, Ramsey MR, Hayes DN, et al (2007). LKB1 modulates lung cancer differentiation and metastasis. Nature, 448, 807-10. https://doi.org/10.1038/nature06030
  34. Karadag A, Fedarko NS, Fisher LW (2005). Dentin matrix protein 1 enhances invasion potential of colon cancer cells by bridging matrix metalloproteinase-9 to integrins and CD44. Cancer Res, 65, 11545-52. https://doi.org/10.1158/0008-5472.CAN-05-2861
  35. Khor TO, Keum YS, Lin W, et al (2006). Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res, 66, 613-21. https://doi.org/10.1158/0008-5472.CAN-05-2708
  36. Kim M, Gans JD, Nogueira C, et al (2006). Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell, 125, 1269-81. https://doi.org/10.1016/j.cell.2006.06.008
  37. Kimelman D, Xu W (2006). beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene, 25, 7482-91. https://doi.org/10.1038/sj.onc.1210055
  38. Korinek V (1997). Constitutive transcriptional activation by a beta -catenin-Tcf complex in APC-/- colon carcinoma. Sci, 275, 1784-7. https://doi.org/10.1126/science.275.5307.1784
  39. Ku G, Tan IB, Yau T, et al (2012). Management of colon cancer: resource-stratified guidelines from the Asian oncology summit 2012. Lancet Oncol, 13, 470-81. https://doi.org/10.1016/S1470-2045(12)70424-2
  40. Kuo ML, Huang TS, Lin JK (1996). Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim Biophys Acta, 1317, 95-100. https://doi.org/10.1016/S0925-4439(96)00032-4
  41. Kushwaha S, Rastogl A, Rai A, et al (2012). Novel drug delivery system for anticancer drug: a review. Intern J Pharm Tech Res, 4, 542-53.
  42. Leu TH, Su SL, Chuang YC, et al (2003). Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity. Biochem Pharmacol, 66, 2323-31. https://doi.org/10.1016/j.bcp.2003.08.017
  43. Lev AA (2004). Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, downregulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res, 26, 4423-30.
  44. Li Y, Bavarva JH, Wang Z, et al (2011). HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene, 30, 2633-43. https://doi.org/10.1038/onc.2010.632
  45. Liang CC, Park AY, Guan JL (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc, 2, 329-33. https://doi.org/10.1038/nprot.2007.30
  46. Meiko T, Tatsuhiko T, Motoharu S, et al (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the b-catenin/Tcf4 complex in human colorectal cancers. Oncogene, 21, 5861-7. https://doi.org/10.1038/sj.onc.1205755
  47. Meng W, Takeichi M (2009). Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol, 1, 289-91.
  48. Mirgani MT, Isacchi B, Sadeghizadeh M, et al (2014). Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine, 9, 403-17.
  49. Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  50. Murray DW (2004). Molecular mechanisms of human colorectal cancer metastasis: identification of novel biomarkers. PhD thesis, Dublin City Univers, 7, 4968-3.
  51. Myal Y, Leygue E, Blanchard AA (2010). Claudin 1 in breast tumorigenesis: revelation of a possible novel “claudin high” subset of breast cancers. J Biomed Biotechnol, 2010, 9568-97.
  52. Natarajan M, Stewart JE, Golemis EA, et al (2006). HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene, 25, 1721-32. https://doi.org/10.1038/sj.onc.1209199
  53. Nobutomo M, Mikio F, Shoichiro T, et al (2001). Involvement of claudin-1 in the-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res, 12, 469-76. https://doi.org/10.3727/096504001108747477
  54. Orr WS, Denbo JW, Saab KR (2012). Liposome-encapsulated curcumin suppresses neuroblastoma growth through nuclear factor-kappa B inhibition. Surgery, 151, 736-44. https://doi.org/10.1016/j.surg.2011.12.014
  55. Paleos C (2013). Formation of artificial multicompartment vesosome and dendrosome as prospected drug and gene delivery carriers. J Control Release, 170, 141-52. https://doi.org/10.1016/j.jconrel.2013.05.011
  56. Qin Ly, Li Mn, Ren Wj, et al (2010). Silencing Pin1 suppresses the expression and bioactivity of MMP-9 through NF-${\kappa}B$ in colorectal carcinoma SW480 cells. Clin Oncol Cancer Res, 7, 12-7. https://doi.org/10.1007/s11805-010-0012-3
  57. Qualtrough D, Buda A, Gaffield W, et al (2004). Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int J Cancer, 110, 831-7. https://doi.org/10.1002/ijc.20227
  58. Ravindran J, Prasad S, Aggarwal B (2009). Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? Am Assoc Pharmaceutical Scientists, 11, 495-510.
  59. Ray S, Chattopadhyay N, Mitra A, et al (2003). Curcumin exhibits antimetastatic properties by modulating integrin receptors, collagenase activity, and expression of Nm23 and E-cadherin. J Environ Pathol Toxicol Oncol, 22, 49-58.
  60. Sadeghizadeh M, Ranjbar B, Damaghi M (2008). Dendrosomes as novel gene porters-III. J Chem Technol Biotechnol, 83, 912-20. https://doi.org/10.1002/jctb.1891
  61. Sanchez-Tillo E, de Barrios O, Siles L, et al (2013). ZEB1 Promotes invasiveness of colorectal carcinoma cells through the opposing regulation of uPA and PAI-1. Clin Cancer Res, 19, 1071-82. https://doi.org/10.1158/1078-0432.CCR-12-2675
  62. Sanchez-Tillo E, Siles L, de Barrios O, et al (2011). Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res, 1, 897-912.
  63. Sarah JF, Margret BE, Geraldine MON, et al (2002). Dissection of HEF1-dependent functions in motility and transcriptional regulation. J Cell Sci, 115, 99-111.
  64. Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, et al (2000). Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol, 75, 919-22. https://doi.org/10.1002/1097-4660(200010)75:10<919::AID-JCTB308>3.0.CO;2-S
  65. Schmalhofer O, Brabletz S, Brabletz T (2009). E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev, 28, 151-66. https://doi.org/10.1007/s10555-008-9179-y
  66. Sebaugh JL (2011). Guidelines for accurate EC50/IC50 estimation. Pharm Stat, 10, 128-34. https://doi.org/10.1002/pst.426
  67. Seo EY, Kim WK (2011). Red ginseng extract reduced metastasis of colon cancer cells in vitro and in vivo. J Ginseng Res, 35, 315-24. https://doi.org/10.5142/jgr.2011.35.3.315
  68. Sita A, Haruyo I, Yasunari T, et al (2006). Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of kinase and akt activation. Mol Pharmacol, 69, 195-206.
  69. Spaderna S, Schmalhofer O, Hlubek F, et al (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830-40. https://doi.org/10.1053/j.gastro.2006.06.016
  70. Sporn MB (1997). The War on Cancer: A Review. Ann New York Academy Scie, 833, 137-46. https://doi.org/10.1111/j.1749-6632.1997.tb48599.x
  71. Su CC, Chen, GW, Lin, JG, Wu, LT, Chung, JG (2006a). Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res, 26, 1281-8.
  72. Su CC, Lin, JK (2006b). Curcumin-induced apoptosis of human colon cancer Colo 205 cells through the production of ROS, Ca2+and the activation of caspase-3. Anticancer Res, 26, 4379-89.
  73. Tian X, Du H, Fu X, et al (2009). Smad4 restoration leads to a suppression of Wnt/beta-catenin signaling activity and migration capacity in human colon carcinoma cells. Biochem Biophys Res Commun, 380, 478-83. https://doi.org/10.1016/j.bbrc.2009.01.124
  74. Trainer DL, Kline T, McCabe FL, et al (1988). Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int J Cancer, 41, 287-96. https://doi.org/10.1002/ijc.2910410221
  75. Wang G, Wang F, Ding W, et al (2013). APRIL induces tumorigenesis and metastasis of colorectal cancer cells via activation of the PI3K/Akt pathway. PLoS One, 8, 552-98.
  76. Wellner U, Schubert J, Burk UC, et al (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol, 11, 1487-95. https://doi.org/10.1038/ncb1998
  77. Xia Y-Q, Weil, X-Y, et al (2014). Curcumin analogue A501 induces G2/M arrest and apoptosis in non-small cell lung cancer cells. Asian Pac J Cancer Prev, 15, 6893-8. https://doi.org/10.7314/APJCP.2014.15.16.6893
  78. Xiaofu W, Qingding W, Kirk LI, et al (2006). Curcumin inhibits neurotensin-mediated interleukin-8 production and migration of HCT116 human colon cancer cells. Clin Cancer Res, 12, 5346-55. https://doi.org/10.1158/1078-0432.CCR-06-0968
  79. Xin ZC (2009). Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biol Therapy, 8, 1360-8. https://doi.org/10.4161/cbt.8.14.8720
  80. Yu W, Xu YC, Tao Y, et al (2013). DcR3 regulates the growth and metastatic potential of SW480 colon cancer cells. Oncol Rep, 30, 2741-8.
  81. Zhang Z-Y, Dong J-H, Chen Y-W, et al (2012). Galectin-9 acts as a prognostic factor with antimetastatic potential in hepatocellular carcinoma. Asian Pac J Cancer Prev, 13, 2503-9. https://doi.org/10.7314/APJCP.2012.13.6.2503
  82. Zhao H, Huang A, Li P, et al (2013). E2A suppresses invasion and migration by targeting YAP in colorectal cancer cells. J Transl Med, 11, 317. https://doi.org/10.1186/1479-5876-11-317

Cited by

  1. Expression Pattern and Prognostic Significance of Claudin 1, 4 and 7 in Pancreatic Cancer vol.16, pp.10, 2015, https://doi.org/10.7314/APJCP.2015.16.10.4387
  2. Anti-proliferative and Apoptotic Effects of Dendrosomal Farnesiferol C on Gastric Cancer Cells vol.16, pp.13, 2015, https://doi.org/10.7314/APJCP.2015.16.13.5325
  3. Dietary Ziziphus jujuba Fruit Influence on Aberrant Crypt Formation and Blood Cells in Colitis-Associated Colorectal Cancer Mice vol.16, pp.17, 2015, https://doi.org/10.7314/APJCP.2015.16.17.7561
  4. Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer vol.142, pp.10, 2016, https://doi.org/10.1007/s00432-016-2167-7
  5. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review pp.1549-7852, 2018, https://doi.org/10.1080/10408398.2016.1252711
  6. Bringing Curcumin to the Clinic in Cancer Prevention: a Review of Strategies to Enhance Bioavailability and Efficacy vol.19, pp.1, 2017, https://doi.org/10.1208/s12248-016-0003-2
  7. Current status and future prospective of Curcumin as a potential therapeutic agent in the treatment of colorectal cancer vol.233, pp.9, 2018, https://doi.org/10.1002/jcp.26368
  8. Curcumin as a therapeutic agent in leukemia pp.00219541, 2019, https://doi.org/10.1002/jcp.28072