References
- Adachi Y, Takeuchi T, Nagayama T, et al (2009). Zeb1-mediated T-cadherin repression increases the invasive potential of gallbladder cancer. FEBS Lett, 583, 430-6. https://doi.org/10.1016/j.febslet.2008.12.042
- Aggarwal S, Ichikawa H, Takada Y, et al (2006). Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol, 69, 195-206.
- Aigner K, Dampier B, Descovich L, et al (2007). The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene, 26, 6979-88. https://doi.org/10.1038/sj.onc.1210508
- Alizadeh AM, Khaniki M, Azizian S, et al (2012). Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier-curcumin. Eur J Pharmacol, 689, 226-32. https://doi.org/10.1016/j.ejphar.2012.06.016
- Amar S, Ashok S, Punita D (2011). Claudin-1 Up-regulates the repressor ZEB-1 to inhibit ecadherin expression in colon cancer cells. Gastroenterology, 141, 2140-53. https://doi.org/10.1053/j.gastro.2011.08.038
- Ammon HP, Wahl MA (1991). Pharmacology of curcuma longa. Planta Med, 57, 1-7. https://doi.org/10.1055/s-2006-960004
- Anand P, Kunnumakkara AB, Newman RA, et al (2007). Bioavailability of curcumin: problems and promises. Mol Pharm, 4, 807-18. https://doi.org/10.1021/mp700113r
- Anand P, Thomas SG, Kunnumakkara AB (2008). Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol, 76, 1590-611. https://doi.org/10.1016/j.bcp.2008.08.008
- Babaei E, Sadeghizadeh M, Hassan ZM, et al (2012). Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Intern Immunopharmacol, 12, 226-34. https://doi.org/10.1016/j.intimp.2011.11.015
- Bharat BA, Shishir S, Yasunari T, et al (2005). Curcumin suppresses the paclitaxel-induced nuclear factor metastasis of human breast cancer in nude mice kb pathway in breast cancer cells and inhibits lung. Clin Cancer Res, 11, 7490-8. https://doi.org/10.1158/1078-0432.CCR-05-1192
- Bora-Tatar G, Dayangac-Erden D, Demir AS, et al (2009). Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorg Med Chem, 17, 5219-28. https://doi.org/10.1016/j.bmc.2009.05.042
- Brabletz S, Brabletz T (2010). The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO Rep, 11, 670-7. https://doi.org/10.1038/embor.2010.117
- Chen HC (2005). Boyden chamber assay. Methods Mol Biol, 294, 15-22.
- Chen ML, Liang LS, Wang XK (2012). miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis, 29, 457-69. https://doi.org/10.1007/s10585-012-9463-7
- Conroy T, Paillot B, Francois E, et al (2005). Irinotecan plus oxaliplatin and leucovorin-modulated fluorouracil in advanced pancreatic cancer-a groupe tumeurs digestives of the federation nationale des centres de lutte contre le cancer study. J Clin Oncol, 23, 1228-36. https://doi.org/10.1200/JCO.2005.06.050
- Das T, Sa G, Saha B, et al (2010). Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol Cell Biochem, 336, 85-95. https://doi.org/10.1007/s11010-009-0269-0
- Dastpeyman M, Motamed N, Azadmanesh K, et al (2012). Inhibition of silibinin on migration and adhesion capacity of human highly metastatic breast cancer cell line, MDA-MB-231, by evaluation of beta1-integrin and downstream molecules, Cdc42, Raf-1 and D4GDI. Med Oncol, 29, 2512-8. https://doi.org/10.1007/s12032-011-0113-8
- Ferlay J, Shin HR, Bray F, et al (2010). GLOBOCAN 2008 v2.0, Cancer incidence and mortality worldwide: IARC cancerbase No. 10 [Internet]. Lyon, France.
- Ferrari E, Pignedoli F, Imbriano C (2011). Newly synthesized curcumin derivatives: crosstalk between chemico-physical properties and biological activity. J Med Chem, 54, 8066-77. https://doi.org/10.1021/jm200872q
- Gemmill RM, Roche J, Potiron VA, et al (2011). ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett, 300, 66-78. https://doi.org/10.1016/j.canlet.2010.09.007
- Gou M, Men K, Shi H, et al (2011). Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale, 3, 1558-67. https://doi.org/10.1039/c0nr00758g
- Graham TR, Zhau HE, Odero-Marah VA, et al (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res, 68, 2479-88. https://doi.org/10.1158/0008-5472.CAN-07-2559
- Gulhati P, Bowen KA, Liu J, et al (2011). mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res, 71, 3246-56. https://doi.org/10.1158/0008-5472.CAN-10-4058
- Gupta IR, Ryan AK (2010). Claudins: unlocking the code to tight junction function during embryogenesis and in disease. Clin Genet, 77, 314-25. https://doi.org/10.1111/j.1399-0004.2010.01397.x
- Hlubek F, Spaderna S, Jung A, et al (2004). Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer, 108, 321-6. https://doi.org/10.1002/ijc.11522
- Hong IK (2008). Curcumin inhibition of integrin (a6b4)-dependent breast cancer cell motility and invasion. Cancer Prev Res, 1, 385-91. https://doi.org/10.1158/1940-6207.CAPR-08-0087
- Hong JH, Ahn KS, Bae E, et al (2006). The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis, 9, 147-52. https://doi.org/10.1038/sj.pcan.4500856
- Huber MA, Kraut N, Beug H (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol, 17, 548-58. https://doi.org/10.1016/j.ceb.2005.08.001
- Huei WC (2008). Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res, 68, 7428-38. https://doi.org/10.1158/0008-5472.CAN-07-6734
- Hynes RO (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673-87. https://doi.org/10.1016/S0092-8674(02)00971-6
- Izumchenko E, Singh MK, Plotnikova OV, et al (2009). NEDD9 promotes oncogenic signaling in mammary tumor development. Cancer Res, 69, 7198-206. https://doi.org/10.1158/0008-5472.CAN-09-0795
- Jeffery GH, Henry LS, Charles ER (2009). Curcumin blocks CCL2 induced adhesion, motility and invasion, in part, through down-regulation of CCL2 expression and proteolytic activity. Int J Oncol, 34, 1319-27.
- Ji H, Ramsey MR, Hayes DN, et al (2007). LKB1 modulates lung cancer differentiation and metastasis. Nature, 448, 807-10. https://doi.org/10.1038/nature06030
- Karadag A, Fedarko NS, Fisher LW (2005). Dentin matrix protein 1 enhances invasion potential of colon cancer cells by bridging matrix metalloproteinase-9 to integrins and CD44. Cancer Res, 65, 11545-52. https://doi.org/10.1158/0008-5472.CAN-05-2861
- Khor TO, Keum YS, Lin W, et al (2006). Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res, 66, 613-21. https://doi.org/10.1158/0008-5472.CAN-05-2708
- Kim M, Gans JD, Nogueira C, et al (2006). Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell, 125, 1269-81. https://doi.org/10.1016/j.cell.2006.06.008
- Kimelman D, Xu W (2006). beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene, 25, 7482-91. https://doi.org/10.1038/sj.onc.1210055
- Korinek V (1997). Constitutive transcriptional activation by a beta -catenin-Tcf complex in APC-/- colon carcinoma. Sci, 275, 1784-7. https://doi.org/10.1126/science.275.5307.1784
- Ku G, Tan IB, Yau T, et al (2012). Management of colon cancer: resource-stratified guidelines from the Asian oncology summit 2012. Lancet Oncol, 13, 470-81. https://doi.org/10.1016/S1470-2045(12)70424-2
- Kuo ML, Huang TS, Lin JK (1996). Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim Biophys Acta, 1317, 95-100. https://doi.org/10.1016/S0925-4439(96)00032-4
- Kushwaha S, Rastogl A, Rai A, et al (2012). Novel drug delivery system for anticancer drug: a review. Intern J Pharm Tech Res, 4, 542-53.
- Leu TH, Su SL, Chuang YC, et al (2003). Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity. Biochem Pharmacol, 66, 2323-31. https://doi.org/10.1016/j.bcp.2003.08.017
- Lev AA (2004). Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, downregulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res, 26, 4423-30.
- Li Y, Bavarva JH, Wang Z, et al (2011). HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene, 30, 2633-43. https://doi.org/10.1038/onc.2010.632
- Liang CC, Park AY, Guan JL (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc, 2, 329-33. https://doi.org/10.1038/nprot.2007.30
- Meiko T, Tatsuhiko T, Motoharu S, et al (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the b-catenin/Tcf4 complex in human colorectal cancers. Oncogene, 21, 5861-7. https://doi.org/10.1038/sj.onc.1205755
- Meng W, Takeichi M (2009). Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol, 1, 289-91.
- Mirgani MT, Isacchi B, Sadeghizadeh M, et al (2014). Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine, 9, 403-17.
- Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Murray DW (2004). Molecular mechanisms of human colorectal cancer metastasis: identification of novel biomarkers. PhD thesis, Dublin City Univers, 7, 4968-3.
- Myal Y, Leygue E, Blanchard AA (2010). Claudin 1 in breast tumorigenesis: revelation of a possible novel “claudin high” subset of breast cancers. J Biomed Biotechnol, 2010, 9568-97.
- Natarajan M, Stewart JE, Golemis EA, et al (2006). HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene, 25, 1721-32. https://doi.org/10.1038/sj.onc.1209199
- Nobutomo M, Mikio F, Shoichiro T, et al (2001). Involvement of claudin-1 in the-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res, 12, 469-76. https://doi.org/10.3727/096504001108747477
- Orr WS, Denbo JW, Saab KR (2012). Liposome-encapsulated curcumin suppresses neuroblastoma growth through nuclear factor-kappa B inhibition. Surgery, 151, 736-44. https://doi.org/10.1016/j.surg.2011.12.014
- Paleos C (2013). Formation of artificial multicompartment vesosome and dendrosome as prospected drug and gene delivery carriers. J Control Release, 170, 141-52. https://doi.org/10.1016/j.jconrel.2013.05.011
-
Qin Ly, Li Mn, Ren Wj, et al (2010). Silencing Pin1 suppresses the expression and bioactivity of MMP-9 through NF-
${\kappa}B$ in colorectal carcinoma SW480 cells. Clin Oncol Cancer Res, 7, 12-7. https://doi.org/10.1007/s11805-010-0012-3 - Qualtrough D, Buda A, Gaffield W, et al (2004). Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int J Cancer, 110, 831-7. https://doi.org/10.1002/ijc.20227
- Ravindran J, Prasad S, Aggarwal B (2009). Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? Am Assoc Pharmaceutical Scientists, 11, 495-510.
- Ray S, Chattopadhyay N, Mitra A, et al (2003). Curcumin exhibits antimetastatic properties by modulating integrin receptors, collagenase activity, and expression of Nm23 and E-cadherin. J Environ Pathol Toxicol Oncol, 22, 49-58.
- Sadeghizadeh M, Ranjbar B, Damaghi M (2008). Dendrosomes as novel gene porters-III. J Chem Technol Biotechnol, 83, 912-20. https://doi.org/10.1002/jctb.1891
- Sanchez-Tillo E, de Barrios O, Siles L, et al (2013). ZEB1 Promotes invasiveness of colorectal carcinoma cells through the opposing regulation of uPA and PAI-1. Clin Cancer Res, 19, 1071-82. https://doi.org/10.1158/1078-0432.CCR-12-2675
- Sanchez-Tillo E, Siles L, de Barrios O, et al (2011). Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res, 1, 897-912.
- Sarah JF, Margret BE, Geraldine MON, et al (2002). Dissection of HEF1-dependent functions in motility and transcriptional regulation. J Cell Sci, 115, 99-111.
- Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, et al (2000). Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol, 75, 919-22. https://doi.org/10.1002/1097-4660(200010)75:10<919::AID-JCTB308>3.0.CO;2-S
- Schmalhofer O, Brabletz S, Brabletz T (2009). E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev, 28, 151-66. https://doi.org/10.1007/s10555-008-9179-y
- Sebaugh JL (2011). Guidelines for accurate EC50/IC50 estimation. Pharm Stat, 10, 128-34. https://doi.org/10.1002/pst.426
- Seo EY, Kim WK (2011). Red ginseng extract reduced metastasis of colon cancer cells in vitro and in vivo. J Ginseng Res, 35, 315-24. https://doi.org/10.5142/jgr.2011.35.3.315
- Sita A, Haruyo I, Yasunari T, et al (2006). Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of kinase and akt activation. Mol Pharmacol, 69, 195-206.
- Spaderna S, Schmalhofer O, Hlubek F, et al (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830-40. https://doi.org/10.1053/j.gastro.2006.06.016
- Sporn MB (1997). The War on Cancer: A Review. Ann New York Academy Scie, 833, 137-46. https://doi.org/10.1111/j.1749-6632.1997.tb48599.x
- Su CC, Chen, GW, Lin, JG, Wu, LT, Chung, JG (2006a). Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res, 26, 1281-8.
- Su CC, Lin, JK (2006b). Curcumin-induced apoptosis of human colon cancer Colo 205 cells through the production of ROS, Ca2+and the activation of caspase-3. Anticancer Res, 26, 4379-89.
- Tian X, Du H, Fu X, et al (2009). Smad4 restoration leads to a suppression of Wnt/beta-catenin signaling activity and migration capacity in human colon carcinoma cells. Biochem Biophys Res Commun, 380, 478-83. https://doi.org/10.1016/j.bbrc.2009.01.124
- Trainer DL, Kline T, McCabe FL, et al (1988). Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int J Cancer, 41, 287-96. https://doi.org/10.1002/ijc.2910410221
- Wang G, Wang F, Ding W, et al (2013). APRIL induces tumorigenesis and metastasis of colorectal cancer cells via activation of the PI3K/Akt pathway. PLoS One, 8, 552-98.
- Wellner U, Schubert J, Burk UC, et al (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol, 11, 1487-95. https://doi.org/10.1038/ncb1998
- Xia Y-Q, Weil, X-Y, et al (2014). Curcumin analogue A501 induces G2/M arrest and apoptosis in non-small cell lung cancer cells. Asian Pac J Cancer Prev, 15, 6893-8. https://doi.org/10.7314/APJCP.2014.15.16.6893
- Xiaofu W, Qingding W, Kirk LI, et al (2006). Curcumin inhibits neurotensin-mediated interleukin-8 production and migration of HCT116 human colon cancer cells. Clin Cancer Res, 12, 5346-55. https://doi.org/10.1158/1078-0432.CCR-06-0968
- Xin ZC (2009). Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biol Therapy, 8, 1360-8. https://doi.org/10.4161/cbt.8.14.8720
- Yu W, Xu YC, Tao Y, et al (2013). DcR3 regulates the growth and metastatic potential of SW480 colon cancer cells. Oncol Rep, 30, 2741-8.
- Zhang Z-Y, Dong J-H, Chen Y-W, et al (2012). Galectin-9 acts as a prognostic factor with antimetastatic potential in hepatocellular carcinoma. Asian Pac J Cancer Prev, 13, 2503-9. https://doi.org/10.7314/APJCP.2012.13.6.2503
- Zhao H, Huang A, Li P, et al (2013). E2A suppresses invasion and migration by targeting YAP in colorectal cancer cells. J Transl Med, 11, 317. https://doi.org/10.1186/1479-5876-11-317
Cited by
- Expression Pattern and Prognostic Significance of Claudin 1, 4 and 7 in Pancreatic Cancer vol.16, pp.10, 2015, https://doi.org/10.7314/APJCP.2015.16.10.4387
- Anti-proliferative and Apoptotic Effects of Dendrosomal Farnesiferol C on Gastric Cancer Cells vol.16, pp.13, 2015, https://doi.org/10.7314/APJCP.2015.16.13.5325
- Dietary Ziziphus jujuba Fruit Influence on Aberrant Crypt Formation and Blood Cells in Colitis-Associated Colorectal Cancer Mice vol.16, pp.17, 2015, https://doi.org/10.7314/APJCP.2015.16.17.7561
- Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer vol.142, pp.10, 2016, https://doi.org/10.1007/s00432-016-2167-7
- Cucurmin, anticancer, & antitumor perspectives: A comprehensive review pp.1549-7852, 2018, https://doi.org/10.1080/10408398.2016.1252711
- Bringing Curcumin to the Clinic in Cancer Prevention: a Review of Strategies to Enhance Bioavailability and Efficacy vol.19, pp.1, 2017, https://doi.org/10.1208/s12248-016-0003-2
- Current status and future prospective of Curcumin as a potential therapeutic agent in the treatment of colorectal cancer vol.233, pp.9, 2018, https://doi.org/10.1002/jcp.26368
- Curcumin as a therapeutic agent in leukemia pp.00219541, 2019, https://doi.org/10.1002/jcp.28072