DOI QR코드

DOI QR Code

The Spectrum of Genetic Mutations in Breast Cancer

  • Sheikh, Asfandyar (Dow Medical College, Dow University of Health Sciences) ;
  • Hussain, Syed Ather (Dow Medical College, Dow University of Health Sciences) ;
  • Ghori, Quratulain (Jinnah Sindh Medical University) ;
  • Naeem, Nida (Liaquat National Hospital) ;
  • Fazil, Abul (Department of General Medicine, Kasturba Medical College, Manipal University) ;
  • Giri, Smith (University of Tennessee Health Science Center) ;
  • Sathian, Brijesh (Department of Community Medicine, Manipal College of Medical Sciences) ;
  • Mainali, Prajeena (Edward via College of Osteopathic Medicine) ;
  • Al Tamimi, Dalal M (Department of Pathology, College of Medicine, King Fahd Hospital of the University, University of Dammam)
  • Published : 2015.04.03

Abstract

Breast cancer is the most common malignancy in women around the world. About one in 12 women in the West develop breast cancer at some point in life. It is estimated that 5%-10% of all breast cancer cases in women are linked to hereditary susceptibility due to mutations in autosomal dominant genes. The two key players associated with high breast cancer risk are mutations in BRCA 1 and BRCA 2. Another highly important mutation can occur in TP53 resulting in a triple negative breast cancer. However, the great majority of breast cancer cases are not related to a mutated gene of high penetrance, but to genes of low penetrance such as CHEK2, CDH1, NBS1, RAD50, BRIP1 and PALB2, which are frequently mutated in the general population. In this review, we discuss the entire spectrum of mutations which are associated with breast cancer.

Keywords

References

  1. Ahmed M, Rahman N (2006). ATM and breast cancer susceptibility. Oncogene, 25, 5906-11. https://doi.org/10.1038/sj.onc.1209873
  2. Akhtari-Zavare M, Ghanbari-Baghestan A, Latiff LA, Matinnia N, Hoseini N (2014). Knowledge of breast cancer and breast self-examination practice among Iranian women in Hamedan, Iran. Asian Pac J Cancer Prev, 15, 6531-4. https://doi.org/10.7314/APJCP.2014.15.16.6531
  3. Al-Tamimi DM, Bernard PS, Shawarby MA, Al-Amri AM, Hadi MA (2009). Distribution of molecular breast cancer subtypes in Middle Eastern-Saudi Arabian women: a pilot study. Ultrastruct Pathol, 33, 141-50. https://doi.org/10.3109/01913120903183135
  4. Al-Tamimi DM, Shawarby MA, Ahmed A, Hassan AK, AlOdaini AA (2010). Protein expression profile and prevalence pattern of the molecular classes of breast cancer: a Saudi population based study. BMC Cancer, 10, 223. https://doi.org/10.1186/1471-2407-10-223
  5. Antoniou A, Pharoah PD, Narod S, et al (2003). Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet, 72, 1117-30. https://doi.org/10.1086/375033
  6. Badar F, Faruqui ZS, Uddin N, et al (2011). Management of breast lesions by breast physicians in a heavily populated south asian developing country. Asian Pac J Cancer Prev, 12, 827-32.
  7. Benusiglio PR, Malka D, Rouleau E, et al (2013). CDH1 germline mutations and the hereditary diffuse gastric and lobular breast cancer syndrome: a multicentre study. J Med Genet, 50, 486-9. https://doi.org/10.1136/jmedgenet-2012-101472
  8. Bertwistle D, Ashworth A (1998). Functions of the BRCA1 and BRCA2 genes. Curr Opin Genet Dev, 8, 14-20. https://doi.org/10.1016/S0959-437X(98)80056-7
  9. Berx G, Cleton-Jansen AM, Nollet F, et al (1995). Ecadherinis a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J, 14, 6107-15.
  10. Berx G, van Roy F (2001). The E-cadherin/catenin complex: an important gate keeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res, 3, 289-93. https://doi.org/10.1186/bcr309
  11. Bogdanova N, Feshchenko S, Schurmann P, et al (2008). Nijmegen Breakage Syndrome mutations and risk of breast cancer. Int J Cancer, 122, 802-6. https://doi.org/10.1002/ijc.23168
  12. Bojesen SE, Pooley KA, Johnatty SE, et al (2013). Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet, 45, 371-84. https://doi.org/10.1038/ng.2566
  13. Bork P, Blomberg N, Nilges M (1996). Internal repeats in the BRCA2 protein sequence. Nat Genet, 13, 22-3. https://doi.org/10.1038/ng0596-22
  14. Bouguerra H, Guissouma H, Labidi S, et al (2014). Breast cancer in Tunisia: association of body mass index with histopathological aspects of tumors. Asian Pac J Cancer Prev, 15, 6805-10. https://doi.org/10.7314/APJCP.2014.15.16.6805
  15. Buisson R, Dion-Cote AM, Coulombe Y, et al (2010). Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol, 17, 1247-54. https://doi.org/10.1038/nsmb.1915
  16. Cantor SB, Bell DW, Ganesan S, et al (2001). BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell, 105, 149-60. https://doi.org/10.1016/S0092-8674(01)00304-X
  17. Carney JP, Maser RS, Olivares H, et al (1998). The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell, 93, 477-86. https://doi.org/10.1016/S0092-8674(00)81175-7
  18. Casadei S, Norquist BM, Walsh T, et al (2011). Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res, 71, 2222-9. https://doi.org/10.1158/0008-5472.CAN-10-3958
  19. Chapman MS, Verma IM (1996). Transcriptional activation by BRCA1. Nature, 382, 678-9. https://doi.org/10.1038/382678a0
  20. Chaturvedi P, Eng WK, Zhu Y, et al (1999). Mammalian Chk2 is a downstream effector of the ATM-dependent DNAdamage checkpoint pathway. Oncogene, 18, 4047-54. https://doi.org/10.1038/sj.onc.1202925
  21. Chauhan A, Subba SH, Menezes RG, et al (2011). Younger women are affected by breast cancer in South India: a hospital based descriptive study. Asian Pac J Cancer Prev, 12, 709-11.
  22. Chehab NH, Malikzay A, Appel M, Halazonetis TD (2000). Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev, 14, 278-88.
  23. CHEK2 Breast Cancer Case-Control Consortium (2004). CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet, 74, 1175-82. https://doi.org/10.1086/421251
  24. Chen A, Kleiman FE, Manley JL, Ouchi T, Pan Z-Q (2002). Autoubiquitination of the BRCA1.BARD1 RING ubiquitin ligase. J Biol Chem, 277, 22085-92. https://doi.org/10.1074/jbc.M201252200
  25. Chen PL, Chen CF, Chen Y, et al (1998). The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci U S A, 95, 5287-92. https://doi.org/10.1073/pnas.95.9.5287
  26. Chong L, Sankavaram K, Freake HC (2011). LIV-1 regulates zinc uptake and E-cadherin (CDH1) expression in MDA-MB-231 breast cancer cells but does not influence SNAI1. FASEB J, 25, 979-2. https://doi.org/10.1096/fj.10-173989
  27. Clark SL, Rodriguez AM, Snyder RR, Hankins GD, Boehning D (2012). Structure-function of the tumor suppressor BRCA1. Comput Struct Biotechnol J, 1, 1.
  28. Cleton-Jansen AM, Callen DF, Seshadri R, et al (2001). Loss of heterozygosity mapping at chromosome arm 16q in 712 breast tumors reveals factors that influence delineation of candidate regions. Cancer Res, 61, 1171-77.
  29. Cleton-Jansen AM (2002). E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer? Breast Cancer Res, 4, 5-8.
  30. Collins N, McManus R, Wooster R, et al (1995). Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene, 10, 1673-75.
  31. Conway AB, Lynch TW, Zhang Y, et al (2004). Crystal structure of a Rad51 filament. Nat Struct Mol Biol, 11, 791-6. https://doi.org/10.1038/nsmb795
  32. Coussens L, Yang-Feng TL, Liao YC, et al (1985). Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science, 230, 1132-9. https://doi.org/10.1126/science.2999974
  33. Davies OR, Pellegrini L (2007). Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol, 14, 475-83.
  34. De Abreu FB, Pirolo LJ, CanevariRde A, et al (2007). Shorter CAG repeat in the AR gene is associated with atypical hyperplasia andbreast carcinoma. Anticancer Res, 27, 1199-205.
  35. De Nicolo A, Tancredi M, Lombardi G, et al (2008). A novel breast cancer-associated BRIP1 (FANCJ/BACH1) germ-line mutation impairs protein stability and function. Clin Cancer Res, 14, 4672-80. https://doi.org/10.1158/1078-0432.CCR-08-0087
  36. Dick MG, Masciari S, Miron A, et al (2011). P1-09-03: Prevalence of germline TP53 mutations in young women with HER2-positive breast cancer. Cancer Res, 71.
  37. Donenberg T, Lunn J, Curling D, et al (2011). A high prevalence of BRCA1 mutations among breast cancer patients from the Bahamas. Breast cancer Res Treat, 125, 591-6. https://doi.org/10.1007/s10549-010-1156-9
  38. Durgan J, Kaji N, Jin D, Hall A (2011). Par6B and atypical PKC regulate mitotic spindle orientation during epithelial morphogenesis. J Biol Chem, 286, 12461-74. https://doi.org/10.1074/jbc.M110.174235
  39. Emens LA (2005). Trastuzumab: targeted therapy for the management of HER-2/neu overexpressing metastatic breast cancer. Am J Ther, 12, 243-53.
  40. Erbil N, Bolukbas N (2014). Health beliefs and breast self-examination among female university nursing students in Turkey. Asian Pac J Cancer Prev, 15, 6525-9. https://doi.org/10.7314/APJCP.2014.15.16.6525
  41. Esteller M, Fraga MF, Guo M, et al (2001). DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet, 10, 3001-7. https://doi.org/10.1093/hmg/10.26.3001
  42. Fallahzadeh H, Momayyezi M, Akhundzardeini R, Zarezardeini S (2014). Five year survival of women with breast cancer in Yazd. Asian Pac J Cancer Prev, 15, 6597-601. https://doi.org/10.7314/APJCP.2014.15.16.6597
  43. Feki A, Jefford CE, Berardi P, et al (2005). BARD1 induces apoptosis by catalysing phosphorylation of p53 by DNA-damage response kinase. Oncogene, 24, 3726-36. https://doi.org/10.1038/sj.onc.1208491
  44. Fostira F, Tsitlaidou M, Papadimitriou C, et al (2012). Prevalence of BRCA1 mutations among 403 women with triple-negative breast cancer: implications for genetic screening selection criteria: a Hellenic Cooperative Oncology Group Study. Breast Cancer Res Treat, 134, 353-62. https://doi.org/10.1007/s10549-012-2021-9
  45. Fostira F, Konstantopoulou I, Mavroudis D, et al (2014). Genetic evaluation based on family history and Her2 status correctly identifies TP53 mutations in very early onset breast cancer cases. Clin Genet. (in Press).
  46. Goldgar DE, Healey S, Dowty JG, et al (2011). Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res, 13, 73. https://doi.org/10.1186/bcr2919
  47. Gomes MC, Kotsopoulos J, de Almeida GL, et al (2012). The R337H mutation in TP53 and breast cancer in Brazil. Hered Cancer Clin Pract, 10, 3. https://doi.org/10.1186/1897-4287-10-3
  48. Gonzalez-Angulo AM, Timms KM, Liu S, et al (2011). Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res, 17, 1082-9. https://doi.org/10.1158/1078-0432.CCR-10-2560
  49. Hall JM, Lee MK, Newman B, (1990). Linkage of early-onset familial breast cancer to chromosome 17q21. Science, 250, 1684-9. https://doi.org/10.1126/science.2270482
  50. Hao Y, Montiel R, Li B, et al (2010). Association between androgen receptor gene CAG repeat polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat, 124, 815-20. https://doi.org/10.1007/s10549-010-0907-y
  51. Heitzer E, Lax S, Lafer I, et al (2013). Multiplex genetic cancer testing identifies pathogenic mutations in TP53 and CDH1 in a patient with bilateral breast and endometrial adenocarcinoma. BMC Med Genet, 14, 129. https://doi.org/10.1186/1471-2350-14-129
  52. Hennig G, Lowrick O, Birchmeier W, Behrens J (1996). Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem, 271, 595-602. https://doi.org/10.1074/jbc.271.1.595
  53. Hisatomi H, Nagao K, Wakita K, Kohno N (2002). ARHI/NOEY2 inactivation may be important in breast tumor pathogenesis. Oncol, 62, 136-40. https://doi.org/10.1159/000048259
  54. Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H (2009). LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev, 89, 777-98. https://doi.org/10.1152/physrev.00026.2008
  55. Joosse SA (2012). BRCA1 and BRCA2: a common pathway of genome protection but different breast cancer subtypes. Nat Rev Cancer, 12, 372.
  56. Jemal A, Bray F, Center MM, et al (2011). Global Cancer statistics. Ca Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
  57. Kanaga KC, Nithiya J, Shatirah MF (2011). Awareness of breast cancer and screening procedures among Malaysian women. Asian Pac J Cancer Prev, 12, 1965-7.
  58. Karadag G, Gungormus Z, Surucu R, Savas E, Bicer F (2014). Awareness and practices regarding breast and cervical cancer among Turkish women in Gazientep. Asian Pac J Cancer Prev, 15, 1093-8. https://doi.org/10.7314/APJCP.2014.15.3.1093
  59. Kern SE, Kinzler KW, Bruskin A, et al (1991). Identification of p53 as a sequence-specific DNA-binding protein. Science, 252, 1708-11. https://doi.org/10.1126/science.2047879
  60. Kinoshita E, van der Linden E, Sanchez H, Wyman C (2009). RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function? Chromosome Res, 17, 277-88. https://doi.org/10.1007/s10577-008-9018-6
  61. Kobayashi J (2004). Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to gamma-H2AX through FHA/BRCT domain. J Radiat Res, 45, 473-8. https://doi.org/10.1269/jrr.45.473
  62. Launonen V (2005). Mutations in the human LKB1/STK11 gene. Hum Mutat, 26, 291-7. https://doi.org/10.1002/humu.20222
  63. Lee JS, Collins KM, Brown AL, Lee CH, Chung JH (2000). hCds1-mediated phosphorylation of BRCA1regulates the DNA damage response. Nature, 404, 201-4. https://doi.org/10.1038/35004614
  64. Lewis AG, Flanagan J, Marsh A, et al (2005). Mutation analysis of FANCD2, BRIP1/BACH1, LMO4 and SFN in familial breast cancer. Breast Cancer Res, 7, 1005-16. https://doi.org/10.1186/bcr1336
  65. Loman N, Johannsson O, Bendahl PO, et al (1998). Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutations or unknown susceptibility genes. Cancer, 83, 310-9. https://doi.org/10.1002/(SICI)1097-0142(19980715)83:2<310::AID-CNCR15>3.0.CO;2-W
  66. Lubahn DB, Joseph DR, Sullivan PM, et al (1988). Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science, 240, 327-30. https://doi.org/10.1126/science.3353727
  67. Luo RZ, Fang X, Marquez R, et al (2003). ARHI is a Ras related small G-protein with a novel N-terminal extension that inhibits growth of ovarian and breast cancers. Oncogene, 22, 2897-909. https://doi.org/10.1038/sj.onc.1206380
  68. Luo RZ, Peng H, Xu F, et al (2001). Genomic structure and promoter characterization of an imprinted tumor suppressor gene ARHI. Biochim Biophys Acta, 1519, 216-22. https://doi.org/10.1016/S0167-4781(01)00226-3
  69. Luo Z, Zang M, Guo W (2010). AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol, 6, 457-70. https://doi.org/10.2217/fon.09.174
  70. Lynch TJ, Bell DW, Sordella R, et al (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 350, 2129-39. https://doi.org/10.1056/NEJMoa040938
  71. Manie E, Vincent-Salomon A, Lehmann-Che J, et al (2009). High frequency of TP53 mutation in BRCA1 and sporadic basallike carcinomas but not in BRCA1 luminal breast tumors. Cancer Res, 69, 663-71. https://doi.org/10.1158/0008-5472.CAN-08-1560
  72. Masciari S, Dillon DA, Rath M, et al (2012). Breast cancer phenotype in women with TP53 germline mutations: a Li-fraumeni syndrome consortium effort. Breast Cancer Res Treat, 133, 1125-30. https://doi.org/10.1007/s10549-012-1993-9
  73. Menichini P, Linial M (2001). SUVi and BACH1: a new subfamily of mammalian helicases? Mutat Res, 487, 67-71. https://doi.org/10.1016/S0921-8777(01)00104-5
  74. Miki Y, Swensen J, Shattuck-Eidens D, et al (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266, 66-71. https://doi.org/10.1126/science.7545954
  75. Mizuta R, LaSalle JM, Cheng HL, et al (1997). RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc Natl Acad Sci USA, 94, 6927-32. https://doi.org/10.1073/pnas.94.13.6927
  76. Natt E, Magenis RE, Zimmer J, Mansouri A, Scherer G (1989). Regional assignment of the human loci for uvomorulin (UVO) and chymotrypsinogen B (CTRB) with the help of two overlapping deletions on the long arm of chromosome 16. Cytogenet Cell Genet, 50, 145-8. https://doi.org/10.1159/000132745
  77. Norsa'adah B, Rahmah MA, Rampal KG, Knight A (2012). Understanding barriers to Malaysian women with breast cancer seeking help. Asian Pac J Cancer Prev, 13, 3723-30. https://doi.org/10.7314/APJCP.2012.13.8.3723
  78. Norlaili AA, Fatihah MA, Daliana NF, Maznah D (2013). Breast cancer awareness of rural women in Malaysia: is it the same as in the cities? Asian Pac J Cancer Prev, 14, 7161-4. https://doi.org/10.7314/APJCP.2013.14.12.7161
  79. Olayioye MA (2001). Update on HER-2 as a target for cancer therapy: intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res, 3, 385-9. https://doi.org/10.1186/bcr327
  80. Pabalan N, Jarjanazi H, Ozcelik H (2013). Association between BRIP1 (BACH1) polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res Treat, 137, 553-8. https://doi.org/10.1007/s10549-012-2364-2
  81. Prokopcova J, Kleibl Z, Banwell CM, Pohlreich P (2007). The role of ATM in breast cancer development. Breast Cancer Res Treat, 104, 121-8. https://doi.org/10.1007/s10549-006-9406-6
  82. Radi SM (2013). Breast cancer awareness among Saudi females in Jeddah. Asian Pac J Cancer Prev, 14, 4307-12. https://doi.org/10.7314/APJCP.2013.14.7.4307
  83. Ravichandran K, Mohamed G, Al-Hamdan NA (2010). Public knowledge on cancer and its determinants among Saudis in the Riyadh Region of Saudi Arabia. Asian Pac J Cancer Prev, 11, 1175-80.
  84. Rahman N, Seal S, Thompson D, et al (2007). PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet, 39, 165-7. https://doi.org/10.1038/ng1959
  85. Rebbeck TR, Kantoff PW, Krithivas K, et al (1999). Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. Am J Hum Genet, 64, 1371-7. https://doi.org/10.1086/302366
  86. Renwick A, Thompson D, Seal S, et al (2006). ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet, 38, 873-5. https://doi.org/10.1038/ng1837
  87. Ripperger T, Gadzicki D, Meindl A, Schlegelberger B (2009). Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet, 17, 722-31. https://doi.org/10.1038/ejhg.2008.212
  88. Rodriguez MC, Songyang Z (2008). BRCT domains: phosphopeptide binding and signaling modules. Front Biosci, 13, 5905-15.
  89. Rosmawati NH (2010). The usage and knowledge of mammography among women in sub-urban area in Terengganu, Malaysia. Asian Pac J Cancer Prev, 11, 767-71.
  90. Sanchez-Cespedes M, Parrella P, Esteller M, et al (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res, 62, 3659-62.
  91. Sathian B, Nagaraja SB, Banerjee I, et al (2014). Awareness of Breast Cancer Warning Signs and Screening Methods among female residents of Pokhara Valley, Nepal. Asian Pac J Cancer Prev, 15, 4723-6. https://doi.org/10.7314/APJCP.2014.15.11.4723
  92. Savitsky K, Bar-Shira A, Gilad S, et al (1995). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 268, 1749-53. https://doi.org/10.1126/science.7792600
  93. Schrader KA, Masciari S, Boyd N, et al (2011). Germline mutations in CDH1 are infrequent in women with early-onset or familial lobular breast cancers. J Med Genet, 48, 64-8. https://doi.org/10.1136/jmg.2010.079814
  94. Seal S, Thompson D, Renwick A, et al (2006). Truncating mutations in the Fanconi anemia J gene BRIP1 are low penetrance breast cancer susceptibility alleles. Nat Genet, 38, 1239-41. https://doi.org/10.1038/ng1902
  95. Serey VH, Kim ES, Monchy D (2011). Preliminary data about female malignant breast tumours in Cambodia. Asian Pac J Cancer Prev, 12, 383-5.
  96. Shallwani K, Ramji R, Ali TS, Khuwaja AK (2010). Self examination for breast and testicularcancers: a community-based intervention study. Asian Pac J Cancer Prev, 11, 383-6.
  97. Shawarby MA, Al-Tamimi DM, Ahmed A (2011). Very low prevalence of epidermal growth factor receptor (EGFR) protein expression and gene amplification in Saudi breast cancer patients. Diagn pathol, 6, 57. https://doi.org/10.1186/1746-1596-6-57
  98. Shiloh Y (2006). The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci, 31, 402-10. https://doi.org/10.1016/j.tibs.2006.05.004
  99. Shuen AY, Foulkes WD (2011). Inherited mutations in breast cancer genes-Risk and response. J Mammary Gland Biol Neoplasia, 16, 3-15. https://doi.org/10.1007/s10911-011-9213-5
  100. Silwal-Pandit L, Vollan HKM, Chin SF, et al (2014). TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin Cancer Res, 20, 3569-80. https://doi.org/10.1158/1078-0432.CCR-13-2943
  101. Smith TR, Liu-Mares W, Van Emburgh BO, et al (2011). Genetic polymorphisms of multiple DNA repair pathways impact age at diagnosis and TP53 mutations in breast cancer. Carcinogenesis, 32, 1354-60. https://doi.org/10.1093/carcin/bgr117
  102. Song H, Ramus SJ, Kjaer SK, et al (2007). Tagging single nucleotide polymorphisms in the BRIP1 gene and susceptibility to breast and ovarian cancer. PLoS One, 2, 268. https://doi.org/10.1371/journal.pone.0000268
  103. Sreedevi A, Quereshi MA, Kurian B, Kamalamma L (2014). Screening for breast cancer in a low middle income country: predictors in a rural area of Kerala, India. Asian Pac J Cancer Prev, 15, 1919-24. https://doi.org/10.7314/APJCP.2014.15.5.1919
  104. Sreedharan J, Muttappallymyalil J, Venkatramana M, Thomas M (2010). Breast self-examination: knowledge and practice among nurses in United Arab Emirates. Asian Pac J Cancer Prev, 11, 651-4.
  105. Steffen J, Nowakowska D, Niwinska A, et al (2006). Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer, 119, 472-5. https://doi.org/10.1002/ijc.21853
  106. Tan M, Yu D (2007). Molecular mechanisms of erbB2-mediated breast cancer chemo resistance. Adv Exp Med Biol, 608, 119-29. https://doi.org/10.1007/978-0-387-74039-3_9
  107. Thai TH, Du F, Tsan JT, et al (1998). Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarianand uterine cancers. Hum Mol Genet, 7, 195-202. https://doi.org/10.1093/hmg/7.2.195
  108. van der Groep P, van der Wall E, van Diest PJ (2011). Pathology of hereditary breast cancer. Cell Oncol (Dordr), 34, 71-88.
  109. van Lier MG, Westerman AM, Wagner A, et al (2011). High cancer risk and increased mortality in patients with Peutz-Jeghers syndrome. Gut, 60, 141-7. https://doi.org/10.1136/gut.2010.223750
  110. Varley J (2003). TP53, hChk2, and the Li-Fraumeni syndrome. Methods Mol Biol, 222, 117-129.
  111. Varley JM (2003). Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat, 21, 313-20. https://doi.org/10.1002/humu.10185
  112. Walsh T, Lee MK, Casadei S, et al (2010). Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci USA, 107, 12629-33. https://doi.org/10.1073/pnas.1007983107
  113. Warner E, Hill K, Causer P, et al (2011). Prospective study of breast cancer incidence in women with a BRCA1 or BRCA2 mutation under surveillance with and without magnetic resonance imaging. J Clin Oncol, 29, 1664-9. https://doi.org/10.1200/JCO.2009.27.0835
  114. Westermark UK, Reyngold M, Olshen AB, et al (2003). BARD1 participates with BRCA1 in homology-directed repair of chromosome breaks. Mol Cell Biol, 23, 7926-36. https://doi.org/10.1128/MCB.23.21.7926-7936.2003
  115. Williams T, Brenman JE (2008). LKB1 and AMPK in cell polarity and division. Trends Cell Biol, 18, 193-8. https://doi.org/10.1016/j.tcb.2008.01.008
  116. Wooster R, Bignell G, Lancaster J, et al (1995). Identification of the breast cancer susceptibility gene BRCA2. Nature, 378, 789-92. https://doi.org/10.1038/378789a0
  117. Wooster R, Neuhausen SL, Mangion J, et al (1994). Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science, 265, 2088-90. https://doi.org/10.1126/science.8091231
  118. Wu MH, Chou YC, Yu CP, et al (2008). Androgen receptor gene CAG repeats, estrogen exposure status, and breast cancer susceptibility. Eur J Cancer Prev, 17, 317-22.
  119. Wu TY, Chung S, Yeh MC, et al (2012). Understanding breast cancer screening practices in Taiwan: a country with universal health care. Asian Pac J Cancer Prev, 13, 4289-94. https://doi.org/10.7314/APJCP.2012.13.9.4289
  120. Xia B, Sheng Q, Nakanishi K, et al (2006). Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell, 22, 719-29. https://doi.org/10.1016/j.molcel.2006.05.022
  121. Yu H, Bharaj B, Vassilikos EJ, Giai M, Diamandis EP (2000). Shorter CAG repeat length in the androgen receptor gene is associated with more aggressive forms of breast cancer. Breast Cancer Res Treat, 59, 153-61. https://doi.org/10.1023/A:1006356502820
  122. Yu Y, Luo R, Lu Z, et al (2006). Biochemistry and biology of ARHI (DIRAS3), an imprinted tumor suppressor gene, whose expression is lost in ovarian and breast cancers. Methods Enzymol, 407, 455-68. https://doi.org/10.1016/S0076-6879(05)07037-0
  123. Zhang B, Beeghly-Fadiel A, Long J, Zheng W (2011). Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol, 12, 477-88. https://doi.org/10.1016/S1470-2045(11)70076-6
  124. Zhang F, Ma J, Wu J, et al (2009). PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol, 19, 524-9.
  125. Zhu Y, Xie Y, Liu F, et al (2014). Systemic analysis on risk factors for breast cancer related lymphedema. Asian Pac J Cancer Prev, 15, 6535-41. https://doi.org/10.7314/APJCP.2014.15.16.6535

Cited by

  1. Management of women with a hereditary predisposition for breast cancer vol.12, pp.19, 2016, https://doi.org/10.2217/fon-2016-0186
  2. A novel loss-of-function heterozygous BRCA2 c.8946_8947delAG mutation found in a Chinese woman with family history of breast cancer vol.143, pp.4, 2017, https://doi.org/10.1007/s00432-016-2327-9
  3. Association Between Human Telomerase Reverse Transcriptase Gene Variations and Risk of Developing Breast Cancer vol.20, pp.8, 2016, https://doi.org/10.1089/gtmb.2015.0339
  4. Sputum Detection of Predisposing Genetic Mutations in Women with Pulmonary Nontuberculous Mycobacterial Disease vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29471-x