References
- Amos CI, Wu X, Broderick P, et al (2008). Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 40, 616-22. https://doi.org/10.1038/ng.109
- Bhat IA, Pandith AA, Bhat BA, et al (2013). Lack of association of a common polymorphism in the 3' -UTR of interleukin 8 with non small cell lung cancer in Kashmir. Asian Pac J Cancer Prev. 14, 4403-8. https://doi.org/10.7314/APJCP.2013.14.7.4403
- Broderick P, Wang Y, Vijayakrishnan J, et al (2009). Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res, 69, 6633-41. https://doi.org/10.1158/0008-5472.CAN-09-0680
- Chen J, Wu X, Pande M, et al (2011). Susceptibility locus for lung cancer at 15q25.1 is not associated with risk of pancreatic cancer. Pancreas, 40, 872-5. https://doi.org/10.1097/MPA.0b013e318219dafe
- Egger M, Davey SG, Schneider M, Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629-34. https://doi.org/10.1136/bmj.315.7109.629
- Heller G, Zielinski CC, Zochbauer-Muller S (2010). Lung cancer: from single-gene methylation to methylome profiling. Cancer Metastasis Rev, 29, 95-107. https://doi.org/10.1007/s10555-010-9203-x
- Hemminki K, Lorenzo BJ, Forsti A(2006).The balance between heritable and environmental aetiology of human disease. Nat Rev Genet, 7, 958-65. https://doi.org/10.1038/nrg2009
- Herbst RS, Heymach JV, Lippman SM (2008). Lung cancer. N Engl J Med, 359, 1367-80. https://doi.org/10.1056/NEJMra0802714
- Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat Med, 21, 1539-58. https://doi.org/10.1002/sim.1186
- Higgins JP, Thompson SG, Deeks JJ, et al (2003).Measuring inconsistency in meta-analyses. BMJ, 327, 557-60. https://doi.org/10.1136/bmj.327.7414.557
- Hung RJ, McKay JD, Gaborieau V, et al (2008). A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature, 452 ,633-7. https://doi.org/10.1038/nature06885
- Jaworowska E, Trubicka J, Lener MR, et al (2011). Smoking related cancers and loci at chromosomes 15q25, 5p15, 6p22.1 and 6p21.33 in the Polish population. PLoS One, 6, 25057. https://doi.org/10.1371/journal.pone.0025057
- Mantel N, HaenszelW. (1959).Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 22, 719-48.
- Parkin DM, Pisani P, Lopez AD, et al (1994). At least one in seven cases of cancer is caused by smoking. Global estimates for 1985. Int J Cancer, 59, 494-504. https://doi.org/10.1002/ijc.2910590411
- Sakoda LC, Loomis MM, Doherty JA, et al (2011).Chromosome 15q24-25.1 variants, diet, and lung cancer susceptibility in cigarette smokers. Cancer Causes Control, 22, 449-61. https://doi.org/10.1007/s10552-010-9716-1
- Schwartz AG, Cote ML, Wenzlaff AS, et al (2009). Racial differences in the association between SNPs on 15q25.1, smoking behavior, and risk of non-small cell lung cancer. J Thorac Oncol, 4, 1195-201. https://doi.org/10.1097/JTO.0b013e3181b244ef
- Shibuya K, Mathers CD, Boschi-Pinto C, et al (2002).Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer, 2, 37. https://doi.org/10.1186/1471-2407-2-37
- Shukla RK, Tilak AR, Kumar C, et al (2013). Associations of CYP1A1, GSTM1 and GSTT1 polymorphisms with lung cancer susceptibility in a Northern Indian population. Asian Pac J Cancer Prev, 14, 3345-9. https://doi.org/10.7314/APJCP.2013.14.5.3345
- Thorgeirsson TE, Geller F, Sulem P, et al (2008). A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature, 452, 638-42. https://doi.org/10.1038/nature06846
- Truong T, Hung RJ, Amos CI, et al (2010). Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J Natl Cancer Inst, 102, 959-71. https://doi.org/10.1093/jnci/djq178
- Wang H, Zhao Y, Ma J, et al (2013). The genetic variant rs401681C/T is associated with the risk of non-small cell lung cancer in a Chinese mainland population. Genet Mol Res, 12 ,67-73. https://doi.org/10.4238/2013.January.22.5
- Wei C, Han Y, Spitz MR, et al (2011). A case-control study of a sex-specific association between a 15q25 variant and lung cancer risk. Cancer Epidemiol Biomarkers Prev, 20, 2603-9. https://doi.org/10.1158/1055-9965.EPI-11-0749
- Yilmaz M, Kacan T, Sari I, et al (2014). Lack of association between the MTHFRC677T polymorphism and lung cancer in a Turkish population. Asian Pac J Cancer Prev, 15, 6333-7. https://doi.org/10.7314/APJCP.2014.15.15.6333
- Yu K, Zhang J, Zhang J, et al (2010). Methionine synthase A2756G polymorphism and cancer risk: a meta-analysis. Eur J Hum Genet, 18, 370-8. https://doi.org/10.1038/ejhg.2009.131
- Zienolddiny S, Skaug V, Landvik NE, et al (2009). The TERT-CLPTM1L lung cancer susceptibility variant associates with higher DNA adduct formation in the lung. Carcinogenesis, 30, 1368-71. https://doi.org/10.1093/carcin/bgp131