참고문헌
- Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007). Curcumin: the Indian solid gold. In The molecular targets and therapeutic uses of curcumin in health and disease (Springer), pp. 1-75.
- Aggarwal BB, Sung B (2009). Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci, 30, 85-94. https://doi.org/10.1016/j.tips.2008.11.002
- Alexandrow MG, Song LJ, Altiok S, et al (2012). Curcumin: a novel stat 3 pathway inhibitor for chemoprevention of lung cancer. Eur J Cancer Prev, 21, 407. https://doi.org/10.1097/CEJ.0b013e32834ef194
- Alizadeh AM, Khaniki M, Azizian S, et al (2012). Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier-curcumin. European J Pharmacol, 689, 226-32. https://doi.org/10.1016/j.ejphar.2012.06.016
- Alizadeh AM, Shiri S, Farsinejad S (2014). Metastasis review: from bench to bedside. Tumor Biol, 35, 8483-523. https://doi.org/10.1007/s13277-014-2421-z
- Antony S, Kuttan R, Kuttan G (1999). Immunomodulatory activity of curcumin. Immunol Invest, 28, 291-303. https://doi.org/10.3109/08820139909062263
- Babaei E, Sadeghizadeh M, Hassan ZM, et al (2012). Dendrosomal curcumin significantly suppresses cancer cell proliferation< i> in vitro and< i> in vivo. Int Immunopharmacol, 12, 226-34. https://doi.org/10.1016/j.intimp.2011.11.015
- Bhattacharyya S, Hossain DMS, Mohanty S, et al (2010). Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cellular Mol Immunol, 7, 306-15. https://doi.org/10.1038/cmi.2010.11
- Biswas SK, Chittezhath M, Shalova IN, Lim J-Y (2012). Macrophage polarization and plasticity in health and disease. Immunol Res, 53, 11-24. https://doi.org/10.1007/s12026-012-8291-9
-
Bounaama A, Djerdjouri B, Laroche-Clary A, Le Morvan V, Robert J (2012). Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-
${\beta}$ 1 and HES-1 transcripts in 1, 2-dimethylhydrazine-colon carcinogenesis in mice. Toxicol, 302, 308-17. https://doi.org/10.1016/j.tox.2012.08.014 - Colombo MP, Trinchieri G (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev, 13, 155-68. https://doi.org/10.1016/S1359-6101(01)00032-6
- Cui Y-L, Li H-K, Zhou H-Y, Zhang T, Li Q (2013). Correlations of tumor-associated macrophage subtypes with liver metastases of colorectal cancer. Asian Pac J Cancer Prev, 14, 1003-7. https://doi.org/10.7314/APJCP.2013.14.2.1003
- Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S (2014). Nanotechnology-applied curcumin for different diseases therapy. Bio Med Res Int, 2014, 394264
- Hao N-B, Lu M-H, Fan Y-H, et al (2012). Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol, 2012, 948098.
- Heusinkveld M, van der Burg SH (2011). Identification and manipulation of tumor associated macrophages in human cancers. J Translat Med, 9, 216. https://doi.org/10.1186/1479-5876-9-216
- Huang Y, Lei Y, Zhang H, Zhang M, Dayton A (2011). Interleukin-12 treatment down-regulates STAT4 and induces apoptosis with increasing ROS production in human natural killer cells. J Leukocyte Biol, 90, 87-97. https://doi.org/10.1189/jlb.1210674
- Jagetia GC, Aggarwal BB (2007). "Spicing up" of the immune system by curcumin. J Clin Immunol, 27, 19-35. https://doi.org/10.1007/s10875-006-9066-7
- Kamran MZ, Patil P, Gude RP (2013). Role of STAT3 in cancer metastasis and translational advances. Bio Med Res Int, 2013, 421821.
- Kelloff GJ, Crowell JA, Steele VE, et al (2000). Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr, 130, 467-71.
- Khaniki M, Azizian S, Alizadeh AM, et al (2013). The antiproliferative and anticancerogenic effects of nanocurcumin in rat colon cancer. Tehran Univers Med J, 71, 277-284.
-
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-
${\Delta}{\Delta}$ CT method. Methods, 25, 402-8. https://doi.org/10.1006/meth.2001.1262 - Martinez FO, Sica A, Mantovani A, Locati M (2007). Macrophage activation and polarization. Frontiers in Bioscience: J Virtual Library, 13, 453-61.
- Medrek C, Ponten F, Jirstrom K, Leandersson K (2012). The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer, 12, 306. https://doi.org/10.1186/1471-2407-12-306
- Mohsenikia M, Alizadeh AM, Khodayari S, et al (2013). The protective and therapeutic effects of alpha-solanine on mice breast cancer. Eur J Pharmacol, 718, 1-9. https://doi.org/10.1016/j.ejphar.2013.09.015
- Murray PJ, Wynn TA (2011). Protective and pathogenic functions of macrophage subsets. Nature Rev Immunol, 11, 723-37. https://doi.org/10.1038/nri3073
- Niu G, Wright KL, Ma Y, et al (2005). Role of Stat3 in regulating p53 expression and function. Mol Cell Bio, 25, 7432-40. https://doi.org/10.1128/MCB.25.17.7432-7440.2005
- Olefsky JM, Glass CK (2010). Macrophages, inflammation, and insulin resistance. Ann Rev Phys, 72, 219-46. https://doi.org/10.1146/annurev-physiol-021909-135846
- Sadeghizadeh M, Ranjbar B, Damaghi M, et al (2008). Dendrosomes as novel gene porters-III. J Chem Technol Biotechnol, 83, 912-20. https://doi.org/10.1002/jctb.1891
- Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, et al (2000). Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol, 75, 919-22. https://doi.org/10.1002/1097-4660(200010)75:10<919::AID-JCTB308>3.0.CO;2-S
-
Schindler H, Lutz MB, Rollinghoff M, Bogdan C (2001). The production of IFN-
${\gamma}$ by IL-12/IL-18-activated macrophages requires STAT4 signaling and is inhibited by IL-4. J Immunol, 166, 3075-82. https://doi.org/10.4049/jimmunol.166.5.3075 - Sica A, Mantovani A (2012). Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 122, 787-95. https://doi.org/10.1172/JCI59643
- Sica A, Schioppa T, Mantovani A, Allavena P (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer, 42, 717-27. https://doi.org/10.1016/j.ejca.2006.01.003
- Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol, 179, 977-83. https://doi.org/10.4049/jimmunol.179.2.977
- Siveen KS, Sikka S, Surana R, et al (2014). Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors. Biochim Biophys Acta, 1845, 136-54.
- Solinas G, Germano G, Mantovani A, Allavena P (2009). Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukocyte Biol, 86, 1065-73. https://doi.org/10.1189/jlb.0609385
- Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011). Immunomodulatory and therapeutic activity of curcumin. Intern Immunopharmacol, 11, 331-41. https://doi.org/10.1016/j.intimp.2010.08.014
- Tu SP, Jin H, Shi JD, et al (2012). Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res, 5, 205-15. https://doi.org/10.1158/1940-6207.CAPR-11-0247
- Uddin S, Hussain AR, Manogaran PS, et al (2005). Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma. Oncogene, 24, 7022-30. https://doi.org/10.1038/sj.onc.1208864
- Varalakshmi C, Ali AM, Pardhasaradhi B, et al (2008). Immunomodulatory effects of curcumin: In-vivo. Intern Immunopharmacol, 8, 688-700. https://doi.org/10.1016/j.intimp.2008.01.008
- Vasquez-Dunddel D, Pan F, Zeng Q, et al (2013). STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest, 123, 1580-9. https://doi.org/10.1172/JCI60083
- Vishvakarma NK, Singh SM (2010). Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: implication in antitumor activation of tumor-associated macrophages. Immunol Letters, 134, 83-92. https://doi.org/10.1016/j.imlet.2010.09.002
- Wang W, Wang J, Dong S-f, et al (2010). Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacologica Sinica, 31, 191-201. https://doi.org/10.1038/aps.2009.205
- Weiss JM, Ridnour LA, Back T, et al (2010). Macrophage-dependent nitric oxide expression regulates tumor cell detachment and metastasis after IL-2/anti-CD40 immunotherapy. J Exp Med, 207, 2455-67. https://doi.org/10.1084/jem.20100670
- Xu M, Mizoguchi I, Morishima N, et al (2010). Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27. J Immunol Res, 2010, 832454.
- Yang C-L, Liu Y-Y, Ma Y-G, et al (2012). Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS One, 7, 37960. https://doi.org/10.1371/journal.pone.0037960
- Yu H, Jove R (2004). The STATs of cancer-new molecular targets come of age. Nature Rev Cancer, 4, 97-105. https://doi.org/10.1038/nrc1275
- Yu H, Pardoll D, Jove R (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Rev Cancer, 9, 798-809. https://doi.org/10.1038/nrc2734
- Zhang X, Tian W, Cai X, et al (2013a). Hydrazinocurcumin encapsuled nanoparticles "re-educate" tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PloS One, 8, 65896. https://doi.org/10.1371/journal.pone.0065896
- Zhang Y, Cheng S, Zhang M, et al (2013b). High-infiltration of tumor-associated macrophages predicts unfavorable clinical outcome for node-negative breast cancer. PloS One, 8, 76147. https://doi.org/10.1371/journal.pone.0076147
피인용 문헌
- Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia vol.10, pp.1, 2016, https://doi.org/10.1021/acsnano.5b06779
- Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer vol.142, pp.10, 2016, https://doi.org/10.1007/s00432-016-2167-7
- Spices for Prevention and Treatment of Cancers vol.8, pp.8, 2016, https://doi.org/10.3390/nu8080495
- Cucurmin, anticancer, & antitumor perspectives: A comprehensive review pp.1549-7852, 2018, https://doi.org/10.1080/10408398.2016.1252711
- Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression vol.8, pp.1664-3224, 2017, https://doi.org/10.3389/fimmu.2017.01129
- Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis vol.9, pp.4, 2017, https://doi.org/10.1177/1758834016687482
- Immune modulation by curcumin: The role of interleukin-10 pp.1549-7852, 2017, https://doi.org/10.1080/10408398.2017.1358139
- Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma vol.139, pp.12, 2016, https://doi.org/10.1002/ijc.30398
- Metastatic genes targeted by an antioxidant in an established radiation- and estrogen-breast cancer model vol.51, pp.5, 2017, https://doi.org/10.3892/ijo.2017.4125
- Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM) and GBM Stem Cells vol.23, pp.1, 2018, https://doi.org/10.3390/molecules23010201
- The combination of curcumin and 5-fluorouracil in cancer therapy vol.41, pp.1, 2018, https://doi.org/10.1007/s12272-017-0979-x
- Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods? pp.1699-3055, 2019, https://doi.org/10.1007/s12094-018-1952-y
- Immunological axis of curcumin-loaded vesicular drug delivery systems vol.10, pp.8, 2018, https://doi.org/10.4155/fmc-2017-0245
- The immunomodulatory potential of natural compounds in tumor-bearing mice and humans pp.1549-7852, 2019, https://doi.org/10.1080/10408398.2018.1537237