References
- Alimohammadi YH, Joo SW (2014). PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev, 15, 517-35. https://doi.org/10.7314/APJCP.2014.15.2.517
- Bravo L (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nut Rev, 56, 317-33.
- Butler MS (2004). The role of natural product chemistry in drug discovery. J Nat Prod, 67, 2141-53. https://doi.org/10.1021/np040106y
- Cai K, Dynlacht BD (1998). Activity and nature of p21WAF1 complexes during the cell cycle. Proc Nat Acad Sci USA, 95, 12254-9. https://doi.org/10.1073/pnas.95.21.12254
- Cao XZ, Xiang HL, Quan MF, et al (2014). Inhibition of cell growth by BrMC through inactivation of Akt in HER-2/neu-overexpressing breast cancer cells. Oncol Letters, 7, 1632.
- Chang H, Mi M, Ling W, et al (2008). Structurally related cytotoxic effects of flavonoids on human cancer cells in vitro. Arch Pharm Res, 31, 1137-44. https://doi.org/10.1007/s12272-001-1280-8
- Chin YW, Balunas MJ, Chai HB, et al (2006). Drug discovery from natural sources. AAPS J, 8, 239-53. https://doi.org/10.1007/BF02854894
- Cook N, Samman S (1996). Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr B, 7, 66-76. https://doi.org/10.1016/0955-2863(95)00168-9
- de Bono JS, Tolcher AW, Rowinsky EK (2003). The future of cytotoxic therapy: selective cytotoxicity based on biology is the key. Breast Cancer Res, 5, 154-9. https://doi.org/10.1186/bcr597
- DeSantis C, Siegel R, Bandi P, et al (2011). Breast cancer statistics, 2011. CA: Cancer J Clin, 61, 408-18. https://doi.org/10.3322/caac.20134
- Dickson M, Schwartz G (2009). Development of cell-cycle inhibitors for cancer therapy. Current Oncol, 16, 36.
- Dwivedi M, Sharma S, Shukla P, et al (2014). Development and evaluation of anticancer polymeric nano-formulations containing curcumin and natural bioenhancers. J Biomaterials Tissue Eng, 4, 198-202. https://doi.org/10.1166/jbt.2014.1164
- Ferlay J, Shin HR, Bray F, et al (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127, 2893-917. https://doi.org/10.1002/ijc.25516
- Fu M, Wang C, Li Z, et al (2004). Minireview: Cyclin D1: normal and abnormal functions. Endocrinol, 145, 5439-47. https://doi.org/10.1210/en.2004-0959
- Gillett C, Fantl V, Smith R, et al (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res, 54, 1812-7.
-
Ghasemal S, Nejati-Koshki K, Akbarzadeh A, et al (2013). Inhibitory effects of
${\ss}$ -cyclodextrin-helenalin complexes on H-TERT gene expression in the T47D breast cancer cell line - Results of real time quantitative. Asian Pac J Cancer Prev, 14, 6949-53. https://doi.org/10.7314/APJCP.2013.14.11.6949 - Ishii Y, Pirkmaier A, Alvarez JV, et al (2006). Cyclin D1 overexpression and response to bortezomib treatment in a breast cancer model. J Nati Cancer Inst, 98, 1238-47. https://doi.org/10.1093/jnci/djj334
- Kadir EA, Sulaiman SA, Yahya NK, et al (2013). Inhibitory effects of Tualang honey on experimental breast cancer in rats: a preliminary study. Asian Pac J Cancer Prev, 14, 2249-54. https://doi.org/10.7314/APJCP.2013.14.4.2249
- Khacha-Ananda S, Tragoolpua K, Chantawannakul P, et al (2013). Antioxidant and Anti-cancer Cell Proliferation Activity of Propolis Extracts from Two Extraction Methods. Asian Pac J Cancer Prev, 14, 6991-5. https://doi.org/10.7314/APJCP.2013.14.11.6991
- Khalil NM, Nascimento TCFd, Casa DM, et al (2013). Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surfaces B Biointerfaces, 101, 353-60. https://doi.org/10.1016/j.colsurfb.2012.06.024
- Khoo BY, Chua SL, Balaram P (2010). Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci, 11, 2188-99. https://doi.org/10.3390/ijms11052188
- Koehn FE, Carter GT (2005). The evolving role of natural products in drug discovery. Nature Rev Drug Disc, 4, 206-20. https://doi.org/10.1038/nrd1657
- Malumbres M, Barbacid M (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 9, 153-66. https://doi.org/10.1038/nrc2602
- Monasterio A, Urdaci MC, Pinchuk IV, et al (2004). Flavonoids induce apoptosis in human leukemia U937 cells through caspase-and caspase-calpain-dependent pathways. Nut Cancer, 50, 90-100. https://doi.org/10.1207/s15327914nc5001_12
- Network CGA (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490, 61-70. https://doi.org/10.1038/nature11412
- Pal-Bhadra M, Ramaiah MJ, Reddy TL, et al (2012). Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1 by altering chromatin of STAT response element in A375 cells. BMC Cancer, 12, 180. https://doi.org/10.1186/1471-2407-12-180
- Sak K (2014). Characteristic features of cytotoxic activity of flavonoids on human cervical cancer cells. Asian Pac J Cancer Prev, 15, 8007-19. https://doi.org/10.7314/APJCP.2014.15.19.8007
- Samarghandian S, Afshari JT, Davoodi S (2011). Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clin, 66, 1073-9. https://doi.org/10.1590/S1807-59322011000600026
- Schwartz GK, Shah MA (2005). Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol, 23, 9408-21. https://doi.org/10.1200/JCO.2005.01.5594
- Sherr CJ, Roberts JM (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Development, 13, 1501-12. https://doi.org/10.1101/gad.13.12.1501
- Siegel R, Naishadham D, Jemal A (2012). Cancer statistics, 2012. Ca: Cancer J Clin, 62, 10-29. https://doi.org/10.3322/caac.20138
- Suganya J, Radha M, Naorem DL, et al (2014). In silico docking studies of selected flavonoids-natural healing agents against breast cancer. Asian Pac J Cancer Prev, 15, 8155-9. https://doi.org/10.7314/APJCP.2014.15.19.8155
- Sui JQ, Xie KP, Zou W, et al (2014). Emodin inhibits breast cancer cell proliferation through the ERalpha-MAPK/Akt-cyclin D1/Bcl-2 signaling pathway. Asian Pac J Cancer Prev, 15, 6247-51. https://doi.org/10.7314/APJCP.2014.15.15.6247
- Walle T, Otake Y, Brubaker J, et al (2001). Disposition and metabolism of the flavonoid chrysin in normal volunteers. British J Clin Pharm, 51, 143-6. https://doi.org/10.1111/j.1365-2125.2001.01317.x
- Yin H-T, Zhang D, Wu X, et al (2013). In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model. Asian Pac J Cancer Prev, 14, 409-12. https://doi.org/10.7314/APJCP.2013.14.1.409
- Yu Q, Geng Y, Sicinski P (2001). Specific protection against breast cancers by cyclin D1 ablation. Nat, 411, 1017-21. https://doi.org/10.1038/35082500
- Zeybek U, Yaylim I, Ozkan NE, et al (2013). Cyclin D1 gene G870A variants and primary brain tumors. APJCP, 14, 4101-6.
- Zhang T, Chen X, Qu L, et al (2004). Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorgan Med Chem, 12, 6097-105. https://doi.org/10.1016/j.bmc.2004.09.013
- Zhang YY, Xu ZN, Wang JX, et al (2012). G1/S-specific cyclin-D1 might be a prognostic biomarker for patients with laryngeal squamous cell carcinoma. Asian Pac J Cancer Prev, 13, 2133-7. https://doi.org/10.7314/APJCP.2012.13.5.2133
- Zhou QM, Wang XF, Liu XJ, et al (2011). Curcumin enhanced antiproliferative effect of mitomycin C in human breast cancer MCF-7 cells in vitro and in vivo. Acta Pharmacol Sinica, 32, 1402-10. https://doi.org/10.1038/aps.2011.97
Cited by
- PLGA-PEG Nanoparticles Coated with Anti-CD45RO and Loaded with HDAC Plus Protease Inhibitors Activate Latent HIV and Inhibit Viral Spread vol.10, pp.1, 2015, https://doi.org/10.1186/s11671-015-1112-z
- Co-Delivery of Curcumin and Chrysin by Polymeric Nanoparticles Inhibit Synergistically Growth and hTERT Gene Expression in Human Colorectal Cancer Cells vol.69, pp.8, 2017, https://doi.org/10.1080/01635581.2017.1367932
- Nanoscale modification of chrysin for improved of therapeutic efficiency and cytotoxicity pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1434661
- Anti-Tumorigenic Activity of Chrysin from Oroxylum indicum via Non-Genotoxic p53 Activation through the ATM-Chk2 Pathway vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061394