DOI QR코드

DOI QR Code

Stem Cell-Derived Conditioned Medium 첨가가 돼지난자의 체외성숙 및 단위발생란의 초기배 발육에 미치는 영향

Effect of Stem Cell-Derived Conditioned Medium on the In Vitro Maturation and Embryonic Development of Parthenogenetic Embryos in Pigs

  • 권대진 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 황인설 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 곽태욱 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 오건봉 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 옥선아 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 정학재 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 임기순 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 황성수 (농촌진흥청 국립축산과학원 동물바이오공학과)
  • Kwon, Dae-Jin (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Hwang, In-Sul (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Kwak, Tae-Uk (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Oh, Keon Bong (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Ock, Sun-A (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Chung, Hak-Jae (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Im, Gi-Sun (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Hwang, Seongsoo (Animal Biotechnology Division, National Institute of Animal Science, RDA)
  • 투고 : 2015.08.13
  • 심사 : 2015.08.26
  • 발행 : 2015.08.31

초록

체외 배양액에 성장호르몬 및 사이토카인의 첨가는 초기배 발육 및 생산된 배반포의 질에 영향을 미칠 수 있다. 본 연구는 돼지 유도만능줄기세포(porcine induced pluripotent stem cell, piPSC)의 조정배지(conditioned medium, CM)가 돼지 난자의 체외성숙 및 단위발생 후 초기배 발육에 미치는 영향을 검토하기 위하여 수행하였다. 난자-난구세포 복합체(cumulus-oocyte complex, COC)는 0(control), 25, or 50%의 줄기세포 배양액(stem cell medium, SM) 또는 CM이 첨가된 체외성숙 배양액으로 배양하였으며, 성숙된 난자는 활성화 유도 후 같은 농도의 SM 또는 CM을 첨가한 체외배양액에서 배양하였다. 체외 성숙율은 CM-25% 그룹에서 대조구보다 유의적으로 높았으나 (p<0.05), 다른 SM 또는 CM 처리구와는 차이가 없었다. 배반포 형성율은 CM-25% 그룹(29.2%)에서 대조구(20.7%), SM-50%(19.6%) 및 CM-50%(23.66%) 처리구보다 유의적으로 높았다(p<0.05). 배반포에서의 세포수 및 세포사 비율은 SM-25% 그룹이 대조구에 비하여 유의적인 차이가 나타났다(p<0.05). 난자의 질과 연관되어 있는 유전자들(Oct4, Klf4, Tert 및 Zfp42)의 발현은 CM-25% 그룹에서 대조구보다 유의적으로 증가되었다(p<0.05). 따라서 본 실험의 결과 체외성숙(IVM) 및 체외발달(IVC) 배양액에 25% 수준의 CM의 첨가는 돼지 단위발생 난자의 배발달과 난자의 질적 향상에 기여하는 것으로 사료된다.

The addition of growth factors and cytokines to in vitro culture (IVC) media could affect embryo development and the quality of the resulting blastocysts. The present study was performed to investigate the effect of porcine induced pluripotent stem cell (piPSC)-culture conditioned medium (CM) on the in vitro maturation (IVM) and development of parthenogentic embryos (parthenotes) in pigs. Cumulus-oocyte complexes (COCs) or activated oocytes were cultured in IVM or IVC medium supplemented with 0 (control), 25, or 50% of stem cell medium (SM) or CM, respectively. The maturation rate of CM-25% group was significantly improved when compared with control group (p<0.05), but that was not different among SM or CM groups. Blastocyst formation rate was significantly higher in CM-25% group (29.2%) than that of control (20.7%), SM-50% (19.6%) and CM-50% (23.66%, p<0.05). Cell number and the apoptotic cell index in blastocysts was significantly lower in SM-25% than in CM-25% group (p<0.05). The embryo quality related genes, OCT4, KLF4, TERT and ZFP42, were significantly increased in CM-25% group compared with control (p<0.05). In conclusion, the addition of 25% of CM to IVM and IVC medium positively influences not only the developmental potential also quality of parthenotes in pig.

키워드

참고문헌

  1. Abeydeera LR, Wang WH, Cantley TC, Rieke A, Prather RS, Day BN (1998): Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol Reprod Dev 51:395-401. https://doi.org/10.1002/(SICI)1098-2795(199812)51:4<395::AID-MRD6>3.0.CO;2-Y
  2. Bae HK, Kim SH, Lee SY, Hwang IS, Park CK, Yang BK, Cheong HT (2013): Effect of antioxidant treatment during parthenogenetic activation procedure on the reactive oxygen species levels and development of the porcine parthenogenetic embryos. Reprod Dev Biol 37(1):51-55. https://doi.org/10.12749/RDB.2013.37.1.51
  3. Baregamian N, Song J, Jeschke MG, Evers BM, Chung DH (2006): IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis. J Surg Res 136:31-37. https://doi.org/10.1016/j.jss.2006.04.028
  4. Carrell DT, Liu L, Huang I, Peterson CM (2005): Comparison of maturation, meiotic competence, and chromosome aneuploidy of oocytes derived from two protocols for in vitro culture of mouse secondary follicles. J Assist Reprod Gen 22:347-354. https://doi.org/10.1007/s10815-005-6793-2
  5. Constant F, Guillomot M, Heyman Y, Vignon X, Laigre P, Servely JL, Renard JP, Chavatte-Palmer P (2006): Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois. Biol Reprod 75:122-130. https://doi.org/10.1095/biolreprod.106.051581
  6. Ho JC, Lai WH, Li MF, Au KW, Yip MC, Wong NL, Ng ES, Lam FF, Siu CW, Tse HF (2012): Reversal of endothelial progenitor cell dysfunction in patients with type 2 diabetes using a conditioned medium of human embryonic stem cell-derived endothelial cells. Diabetes Metab Res 28:462-473. https://doi.org/10.1002/dmrr.2304
  7. Ivanova-Todorova E, Bochev I, Dimitrov R, Belemezova K, Mourdjeva M, Kyurkchiev S, Kinov P, Altankova I, Kyurkchiev D (2012): Conditioned medium from adipose tissue-derived mesenchymal stem cells induces CD4+FOXP3+ cells and increases IL-10 secretion. BioMed Res Int (J Biomed Biotechnol) 295167.
  8. Jousan F, Hansen P (2004): Insulin-like growth factor-I as a survival factor for the bovine preimplantation embryo exposed to heat shock. Biol Reprod 71:1665-1670. https://doi.org/10.1095/biolreprod.104.032102
  9. Kida H, Yoshida M, Hoshino S, Inoue K, Yano Y, Yanagita M, Kumagai T, Osaki T, Tachibana I, Saeki Y (2005): Protective effect of IL-6 on alveolar epithelial cell death induced by hydrogen peroxide. Am J Physiol-Lung C 288:L342-L349. https://doi.org/10.1152/ajplung.00016.2004
  10. Kim CH, Park EJ, Hwang JY, Hong SH, Kim SH, Chae HD, Kang BM (2002): The effect of granulocyte colony stimulating factor and granulocyte macrophage colony stimulating factor on the preimplantation development and implantation in mouse embryos. Korean J Obstet Gynecol 45:126-132.
  11. Kim HO, Choi SM, Kim HS (2013): Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng Regen Med 10:93-101. https://doi.org/10.1007/s13770-013-0010-7
  12. Kim S, Lee SH, Kim JH, Jeong YW, Hashem MA, Koo OJ, Park SM, Lee EG, Hossein MS, Kang SK, Lee BC, Hwang WS (2006): Anti-apoptotic effect of insulin-like growth factor (IGF)-I and its receptor in porcine preimplantation embryos derived from in vitro fertilization and somatic cell nuclear transfer. Mol Reprod Dev 73:1523-1530. https://doi.org/10.1002/mrd.20531
  13. Kurzawa R, Glabowski W, Baczkowski T, Wiszniewska B, Marchlewicz M (2004): Growth factors protect in vitro cultured embryos from the consequences of oxidative stress. Zygote 12:231-240. https://doi.org/10.1017/S0967199404002783
  14. Kwon D, Jeon H, Oh KB, Ock SA, Im GS, Lee SS, Im SK, Lee JW, Oh SJ, Park JK, Hwang S (2013): Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the massachusetts general hospital miniature pig. BioMed Res Int (J Biomed Biotechnol) 140639.
  15. Lee MJ, Kim J, Lee KI, Shin JM, Chae JI, Chung HM (2011): Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy 13:165-178. https://doi.org/10.3109/14653249.2010.512632
  16. Lonergan P, Fair T, Corcoran D, Evans AC (2006): Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology 65:137-152. https://doi.org/10.1016/j.theriogenology.2005.09.028
  17. Martal JL, Chene NM, Huynh LP, L'Haridon RM, Reinaud PB, Guillomot MW, Charlier MA, Charpigny SY (1998): IFN-tau: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structurefunction relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochimie 80:755-777. https://doi.org/10.1016/S0300-9084(99)80029-7
  18. Neira JA, Tainturier D, Pena MA, Martal J (2010): Effect of the association of IGF-I, IGF-II, bFGF, TGF- ${\beta}1$, GM-CSF, and LIF on the development of bovine embryos produced in vitro. Theriogenology 73:595-604. https://doi.org/10.1016/j.theriogenology.2009.10.015
  19. Nilsson EE, Kezele P, Skinner MK (2002): Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 188:65-73. https://doi.org/10.1016/S0303-7207(01)00746-8
  20. Parekkadan B, Van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML (2007): Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PloS One 2:e941. https://doi.org/10.1371/journal.pone.0000941
  21. Park BS, Kim WS, Choi JS, Kim HK, Won JH, Ohkubo F, Fukuoka H (2010): Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomed Res 31:27-34. https://doi.org/10.2220/biomedres.31.27
  22. Rizos D, Gutierrez-Adan A, Perez-Garnelo S, De La Fuente J, Boland M, Lonergan P (2003): Bovine embryo culture in the presence or absence of serum: Implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod 68:236-243. https://doi.org/10.1095/biolreprod.102.007799
  23. Sa SJ, Park CK, Cheong HT, Son JH, KimMJ, Cho KH, Kim DW, So KM, Kim IC (2011): Relationship between in vitro maturation and plasminogen activator activity on porcine cumulus-oocytes complexes exposed to oxidative stress. Reprod Dev Biol 35(3):221-225.
  24. Shibuki H, Katai N, Kuroiwa S, Kurokawa T, Arai J, Matsumoto K, Nakamura T, Yoshimura N (2002): Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 43:528-536.
  25. Spanos S, Becker DL, Winston RM, Hardy K (2000): Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod 63:1413-1420. https://doi.org/10.1095/biolreprod63.5.1413
  26. Watson AJ, Hogan A, Hahnel A, Wiemer KE, Schultz GA (1992): Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo. Mol Reprod Dev 31:87-95. https://doi.org/10.1002/mrd.1080310202
  27. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS (1998): Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 13:998-1002. https://doi.org/10.1093/humrep/13.4.998
  28. Young L, Fernandes K, McEvoy T, Butterwith S, Gutierrez C, Carolan C, Broadbent P, Robinson J, Wilmut I, Sinclair K (2001): Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 27:153-154. https://doi.org/10.1038/84769
  29. Yuan Y, Ida JM, Paczkowski M, Krisher RL (2011): Identification of developmental competence-related genes in mature porcine oocytes. Mol Reprod Dev 78:565-575. https://doi.org/10.1002/mrd.21351
  30. Zheng P, Dean J (2007): Oocyte-specific genes affect folliculogenesis, fertilization, and early development. Semin Reprod Med 25:243-251. https://doi.org/10.1055/s-2007-980218