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Abstract: The autonomous underwater vehicle (AUV) is being widely researched in order to 
achieve superior performance when working in hazardous environments. This research focuses on 
using image processing techniques to estimate the AUV's egomotion and the changes in orientation, 
based on image frames from different time frames captured from a single high-definition web 
camera attached to the bottom of the AUV. A visual odometry application is integrated with other 
sensors. An internal measurement unit (IMU) sensor is used to determine a correct set of answers 
corresponding to a homography motion equation. A pressure sensor is used to resolve image scale 
ambiguity. Uncertainty estimation is computed to correct drift that occurs in the system by using a 
Jacobian method, singular value decomposition, and backward and forward error propagation.     

 
Keywords: Underwater robot, Visual odometry, Monocular odometry, AUVs, Robot navigation  
 
 
1. Introduction 

The underwater autonomous vehicle (AUV) is still in 
development but aims to be effective when working in the 
industrial field. To create an autonomous robot, one of the 
important things is a strategy to autonomously navigate the 
robot to desired destinations. Several techniques are used 
to estimate its motion by using imaging sonar or Doppler 
velocity log (DVL). Because the cost per sensor device is 
extremely high, an alternative for AUV navigation is 
implemented in this research by using a visual odometry 
concept, which is normally used in mobile robots.  

In our design procedure, the monocular visual 
odometry estimation was done by using a single high-
definition camera attached to the bottom of the robot, 
grabbing different time sequences of images and 
calculating the robot’s movement from changes between 
two images. Assume that the roll, pitch and depth of the 
robot in relation to the floor of the testing field is known, 
the monocular visual odometry concept is designed as seen 
in Fig. 1. 

2. Odometry Estimation via Homography 

The implementation is based on using a single pin-hole 
camera. The Shi-Tomasi [1] method and Lucas-Kanade 
pyramidal optical flow [2] are used in order to estimate a 
different time image homography. Optical flow is 
implemented in OpenCV for the feature matching 
algorithm. A random sample consensus (RANSAC) 
method is used to eliminate any feature outliers. Let the 
estimated projective homography between frames be 12H , 
and let the camera intrinsic parameter be 1A . Hence, the 
calibrated homography is shown in Eq. (1):  
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where  
- 2R  is the camera's rotation matrix  
- 2t  is the camera's translation vector 
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- 1n  is a normal vector to the object (ground) plane, and 
- d is the distance to the object (ground) plane in meters 

 
In advanced, every single image frame is adjusted for 

its rotation about the x and y axes, Roll ( )ϕ  and Pitch ( )θ  
are known by applying a compensated homography to the 
image. If 2 [000]T=t from Eq. (1), the compensated 
homography can be rewritten as Eq. (2): 

 
 1

1 1ϕ θ
−=H A R R A                               (2) 

 
From Eq. (1), two sets of solutions can be obtained: 
{ }1 1 1

1 12 2 1 , ,S = R t n  and { }2 2 2
2 12 2 1, , .S = R t n  The criteria for 

choosing a correct solution is, as both frames are 
compensated on the same plane (plane normal vector 
direction toward camera), Roll ( )ϕ and Pitch ( )θ  of the 
correct rotation matrix (either 1

12R or 2
12R ) must be set to 

about zero, which must correspond to the correct set of 
answers, as shown in Eq. (3): 

 
2 2argmin( ), 1,2i i i

i
S iϕ θ= + =                   (3) 

3. Covariance Matrix Estimation 

An odometry estimation of the sensors’ covariance 
matrix is needed in order to determine the uncertainty 
occurring in the system. To estimate the uncertainty of 
rotation about the z-axis, or yaw ( )ψ , and horizontal 
translation (x, y), there are two steps as shown in sections 
3.1 and 3.2. 

3.1 Homography Covariance Matrix 
First, backward error propagation is used to find a 

homography error covariance matrix [3]: 
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where 
- p' is the vector of the matched feature point in the 

second image  

- 
,i ijh

∂
∂ x

p'  is a Jacobian matrix of p'  

- †  is a pseudo inverse. 

- ∑  is a covariance matrix 
 

For '
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ip  in the Jacobian
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∂
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if the estimate point is normalized in the image plane, the 
estimate homography is affine in all cases ( 31 32 0h h= =  
and 33 1h =   ). So, we have 
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By taking a partial derivative of Eq. (5), the Jacobian 

element is: 
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Fig. 1. The monocular visual odometry concept. 
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And the other element of the Jacobian is 0, since we 
assume that each pixel feature is independent. 

In this case, variance of error that occurs in the 
matching algorithm is assumed to be less than 1 pixel, and 
there is no error in first-image acquisition. 6σ  is used to 
determine the variance in every single pixel when all of 
them are independent. Then, the Jacobian of the SVD is 
computed by using Eq. (7) in order to solve another layer 
of back error propagation: 

 

 12  
c T

T T

ij ij ij ijh h h h
∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂
H U D VDV U V UD       (7) 

 
From Eq. (7), the equation is solved as referred to by 

Papadopoulo and Lourakis [4], as follows: 
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where the index ranges are 1,2,3k =  and 1, 2l i i= + + . 
Since k lλ λ≠  , the 2x2 equation system (9) has a unique 
solution that is practically solved by using Cramer’s Rule: 
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And finally, we obtain the Jacobian of U and V   from 
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From Eqs. (8), (12), and (13), 
ijh

∂
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U , 
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T

ijh
∂
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can be obtained, where U,D,V   are results of applying 
SVD to 12

cH . Their covariance matrix , ,D∑ ∑ ∑U V  can be 
computed via a forward error propagation method as 
follows: 
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where UJ , DJ , VJ  is the Jacobian of U,D,V , 
respectively. From Eq. (14), the covariance matrix of 

,U,V D  is ∑U,V,D concatenated together as 
 

 
11 33 11 33 1 2 3

2 2 2 2 2 2 2( ) u u v v λ λ λσ σ σ σ σ σ σ⎡ ⎤∑ = ⎣ ⎦U,V,Ddiag     (15) 
 
In this case, we assume that each parameter in ,U,V D  

matrices are independent, so as we propagate the value 
from Eq. (14), we force the other element to be 0.   
3.2 Rotation Matrix and Translation 

Vector Covariance Matrix Estimation 
For the rotation matrix, recall that, in this paper, we are 

only interested in yaw (ψ  ), which could be determined 
from the camera’s frame rotation matrix ( 2R ) which can 
be computed from 
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with criteria such that ( ) ( )sgn sgnβ δ= − . And the yaw of 

2R can be obtained as: 
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where the rotation matrix elements 11r , 21r   can be derived 
from Eq. (17): 
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To achieve the target to determine yaw uncertainty, we 

apply forward propagation to Eq. (17) where its Jacobian 
can be retrieved by doing a partial derivative function of 
yaw with respect to the U,V,D parameters. Therefore, 
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And finally, the covariance of yaw can be obtained 

from forward error propagation: 
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 2 T
ψ ψσΨ = ΣU,V,DJ J                      (19) 

 
For translation covariance, from Eq. (1), the translation 

vector can be obtained by 
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where  
- [ Tx y z=2t  
- ω  is a scale factor of normal vector  

 
ω  is a factor that scales the normal vector to 1 1=n , 

so we have  
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By substituting Eq. (21) into Eq. (20), we get a full 

camera translation vector: 
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The translation vector Jacobian matrix tJ  can be 

derived from a partial derivative to all 21 parameters 
( )( )   , diag ,all element of U D V   that have dependency in 

Eq. (22). Finally, we apply forward propagation and we 
have 

 
 T

t t tΣ = ΣU,V,DJ J                (23) 

4. Experimental Procedure and Results 

In order to implement our visual odometry algorithm, 
the OpenCV library (in C++) for image processing is used. 
Now, the visual odometry component is tested on a 
prototype frame to which the selected camera (Logitech 
C920) is attached, as shown in Fig. 2. A Vectornav VN-
100 (Fig. 3) internal measurement unit was chosen to 
measure the prototype frame orientation. The IMU 
specification is described in Table 1, in which we used 
fused data from a gyroscope, an accelerometer and a 
magnetometer. Leaves and rocks were selected as the 
objects in order to simulate a real underwater environment. 
They are a good for a real-time feature tracking with good 
tracking results. The features of leaves and rocks are 
displayed in Fig. 4. 

The conclusion of the implementation procedure for 
the monocular visual odometry is described in Fig. 5. 

In system integration, all of the software components 
are run on the robot operating system (ROS). ROS is a 
middleware or a framework for robot software 
development. Instead of programming every single module 

in one project or process, ROS provides tools and libraries 
to do inter-process communication using a publish-and-
subscribe mechanism to the socket servers that handle all 

 

Fig. 2. Prototype frame for testing visual odometry. 
 

 

Fig. 3. Vectornav VN-100 IMU. 
 

Table 1. Vectornav VN-100 IMU Specification. 

Specification  
Range: Heading, Roll ±180° 

Range: Pitch  ±90° 
Static Accuracy (Heading, Magnetic) 2.0° RMS 

Static Accuracy (Pitch/Roll) 0.5° RMS 
Dynamic Accuracy (Heading, Magnetic) 2.0° RMS 

Dynamic Accuracy (Pitch/Roll) 1.0° RMS 
Angular Resolution < 0.05° 

Repeatability < 0.2° 
 

Fig. 4. Real-time feature tracking using Lucas-Kanade 
pyramidal optical flow on a prototype frame. 
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messages, parameters and services that occur in the 
systems, which support python and C++. Moreover, ROS 
also links many useful libraries for robotics programming, 
such as OpenCV and OpenNI, and it provides some 
hardware driver packages (e.g., Dynamixel Servo) and a 
visualization package to use with ROS messages. 
Furthermore, ROS handles sensors, images and data flow 
in the system, which makes system integration easier.  

4.1 Error Evaluation 
The system was tested over several iterations. In our 

experiment, bias of 15.6344% of translation was added to 
the system in order to compensate for the translation error. 
Percent error of translation, by using the LK optical flow 
algorithm, in the experiments is packed enough to 
compensate, as shown in Fig. 6. 

4.2 Results 
The visual odometry algorithm was subjected to 

experimentation. The prototype frame was driven along 
the ground in order to create translation motion as a fixed 
trajectory. In the experiment, the prototype frame was 
turned clockwise 90 degrees, and then sent straight for a 
while; after that, we turned it back by 90 degrees. The real 

experimental results compared with the ground truth are 
shown in Fig. 7. 

The experimental results show that the estimated 
trajectory is close to the real translation trajectory. The 
second experiment was conducted in order to obtain the 
estimated yaw angle by using the proposed algorithm. The 
Vectornav VN-100 internal measurement unit (IMU) was 
used in the second experiment in order to obtain the yaw 
angle when the prototype frame is rotated. With the same 
trajectory as in Fig. 7, the results from the visual odometry 
estimation algorithm and from the real yaw angle from the 
IMU were compared and are shown in Fig. 8. The 
experimental results show that the estimated trajectory is 
also close to the real translation trajectory, even when the 
frame is rotated. 

The covariance matrix estimation of the visual 
odometry algorithm was obtained from a real experiment 
in real time. As we calculated them frame by frame, each 
output parameter variance is shown compared with x, y, 
yaw output from visual odometry estimation in Fig. 9, Figs. 
10 and 11, respectively. Note that we scale the value of 
yaw so that it can be seen in relation to the value transition 
and its covariance value.  

In addition, we applied our monocular visual odometry 
algorithm to a video data log of a real underwater robot. 

Fig. 5. Implementation procedure for visual odometry.
 

 

Fig. 6. Visual odometry translation error. 
 

 

Fig. 7. Visual odometry experimental results (trajec-
tory). 

 

Fig. 8. Visual odometry experimental result ( )ψ .  
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The data log was collected from a Robosub 2014 
competition organized by the Association for Unmanned 
Vehicle Systems International (AUVSI), which was an 
international competition. By using the ROS, IMU data 
and barometer data was also collected with time 
synchronization with the video data log so that we could 
apply our algorithm. Results are shown in Fig. 12, which 
demonstrates that our algorithm can be used in a hazardous 
underwater environment with good performance. 

Despite unavailability of the real ground truth of the 
competition field, we could still estimate the robot 
displacement using a GPS and the competition field plan 
given by AUVSI. The displacement from the AUV 
deployment point to where it stopped is about 8.5 meters, 
which is shown in Fig. 12, such that our algorithm could 
estimate AUV trajectory. 

All of the experiments were well tested in a prototype  

 

Fig. 9. X variance estimation from visual odometry results. 
 

 

Fig. 10. Y variance estimation from visual odometry results. 
 

 

Fig. 11. Yaw variance estimation from visual odometry results. 
 

 

Fig. 12. Final trajectory result of the data log. 
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Fig. 13. Bird’s eye view of testing the AUV in the Robosub 2014 competition. 
 

 

Fig. 14. Visual odometry from the Robosub 2014 competition data log. 
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frame. In practice, it will be implemented and tested “in 
real time” in our designed autonomous underwater robot, 
as shown in Fig. 15. 

5. Conclusion 

A monocular visual odometry estimation was 
implemented and tested in a prototype frame by looking 
downward to the ground plane and compensating every 
input image using pitch and roll from an IMU to guarantee 
that the input features were not distorted by the camera’s 
direction. With Lucas-Kanade pyramidal optical flow, the 
tracked Shi-Tomasi method on the ground can be 
calculated between frame homography. After the 
homography is decomposed and the two sets of answers 
are obtained, the criteria for choosing them was explained. 
In order to control robot navigation, covariance of the 
visual odometry output, x y and yaw, is computed by using 
back and forward error propagation and Jacobian matrix 
and all mathematical derivatives are explained. The 
experimental visual odometry algorithm was tested, 
showed good results, and will later be implemented on a 
real underwater robot. 
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