참고문헌
- Adams, J.B., M.O. Smith, and A.R. Gillespie, 1993. Imaging spectroscopy: interpretation based on spectral mixture analysis. In: Remote geochemical analysis: Elemental and mineralogical composition, Piters, C. M. and P. A. J. Englert (Editors), Cambridge University, New York, pp. 145-166.
- Baatz, M., U. Benz, S. Dehghani, M. Heynen, A. Holtje, P. Hofmann, L. Lingenfelder, M. Mimler, M. Sohlbach, M. Weber, and G. Willhauck, 2000. eCognition User Guide, Munchen: Definiens AG.
- Berman, M., A. Phatak, and A. Traylen, 2012. Some invariance properties of the minimum noise fraction transform, Chemometrics and Intelligent Laboratory Systems, 117: 189-199. https://doi.org/10.1016/j.chemolab.2012.02.005
- Bhaskaran, S., S. Paramananda, and M. Ramnarayan, 2010. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data, Applied Geography, 30(4): 650-665. https://doi.org/10.1016/j.apgeog.2010.01.009
- Chaudhry, F., C.C. Wu, W. Liu, C.I. Chang and A. Plaza, 2006. Pixel purity index-based algorithms for endmember extraction from hyperspectral imagery, Recent Advances in Hyperspectral Signal and Image Processing, 37/661(2): 29-62.
- Chabaeva, A., D.L. Civco, and J.D. Hurd, 2009. Assessment of impervious surface estimation techniques, Journal of Hydrology Engineering, 14(4SI): 377-387 https://doi.org/10.1061/(ASCE)1084-0699(2009)14:4(377)
- Civico, D.L., J.D. Hurd, E.H. Wilson, C.L. Arnold, and M.P. Prisloe, 2002. Quantifying and describing urbanising landscapes in the northeast United States, Photogrammetric Engineering and Remote Sensing, 68: 1083-1090.
- Conchedda, G., L. Durieux, and P. Mayaux, 2008. An object-based method for mapping and change analysis in mangrove ecosystems, Journal of Photogrammetry & Remote Sensing, 63: 578-589. https://doi.org/10.1016/j.isprsjprs.2008.04.002
- De Kok, R., T. Schneider, and U. Ammer, 1999. Objectbased classification and applications in the Alpine forest environment, International Archives of Photogrammetry and Remote Sensing, 32: 7-4-3.
- Dennison, P.E. and D.A. Roberts, 2003. Endmember selection for multiple endmember spectral mixture analysis using Endmember Average RMSE, Remote Sensing of Environment, 87: 123-135 https://doi.org/10.1016/S0034-4257(03)00135-4
- Goetz, S.J., K.W. Robb, J.S. Andrew, Z. Elizabeth, and S. Erika, 2003. IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region, Remote Sensing of Environment, 88: 195-208. https://doi.org/10.1016/j.rse.2003.07.010
- Hajek, F., 2006. Object-oriented classification of Ikonos satellite data for the identification of tree species composition, Journal of Forest Science, 52(4): 181-187. https://doi.org/10.17221/4500-jfs
- Harayama, A. and J.M. Jaquet, 2004. Multi-source object-oriented classification of land cover using very high resolution imagery and digital elevation model, UNEP Conference. Geneva, Switzerland.
- Hirata, Y. and T. Takahashi, 2009. Object-oriented classification and sampling rate of Landsat TM data for Forest Cover Assessment, MSU Conference. Quebec, Canada.
- Huang, L. and L. Ni, 2008. Object-oriented classification of high resolution satellite image for better accuracy, Proc. of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, June 25-27, Shanghai, P. R. China, pp. 211-218.
- Huguenin, R.L., M.H. Wang, R. Biehl, S. Stoodley, and J.N. Rogers, 2004. Automated subpixel photobathymetry and water quality mapping, Photogrammetric Engineering and Remote Sensing, 70(1): 111-123. https://doi.org/10.14358/PERS.70.1.111
- Hurd, J.D., D.L. Civico, M.S. Gilmore, S. Prisloe, and E.H. Wilson, 2006. Tidal Wetland Classification from Landsat Imagery Using an Integrated Pixel-based and Object-based Classification Approach, Proc. of ASPRS 2006 Annual Conference, Reno, Nevada, May 1-5, 2006.
- Jenerette, G.D. and W. Jianguo, 2001. Analysis and simulation of land-use changes in the central Arizona-Phoenix region, USA. Landscape Ecology, 16: 611-626. https://doi.org/10.1023/A:1013170528551
- Jensen, J.R. 2005. Introductory Digital Image Proc. of A Remote Sensing Perspective (3rd), Prentice Hall, Upper Saddle River.
- Justice, D. and F. Rubin, 2003. Developing impervious surface estimates for coastal New Hampshire, Final Report to the New Hampshire Estuaries Project, Complex Systems Research Center, Institute for the Study of Earth, Oceans and Space, Morse Hall, Univirsity of New Hampshire, Dunham, N.H.
- Kux, H.J.H. and E.H.G. Araujo, 2006. Multi-temporal object-oriented classification and analysis of Quickbird scenes at a metropolitan area in Brazil, 1st International Conference on Object-Based Image Analysis (OBIA). Salzbarg University, Austria.
- Lee, S. and R.G. Lathrop, 2005. Sub-pixel estimation of urban land-cover components with linear mixture model analysis and Landsat Thematic Mapper imagery, International Journal of Remote Sensing, 26(22): 4885-4905. https://doi.org/10.1080/01431160500300222
- Lee, S. and R.G. Lathrop, 2006. Sub-pixel analysis of Landsat ETM+ using self-organizing map (SOM) neural networks for urban land-cover characterization, Ieee Transactions on Geoscience and Remote Sensing, 44(6): 1642-1654. https://doi.org/10.1109/TGRS.2006.869984
- Lu, D.S., Q.H. Weng, and G. Li, 2006. Residential population estimation using a remote sensing derived impervious surface approach, International Journal of Remote Sensing, 27(16): 3553-3570. https://doi.org/10.1080/01431160600617202
- Lu, D. and Q. Weng, 2006. Use of impervious surface in urban land use classification, Remote Sensing of Environment, 102 (1-2): 146-160. https://doi.org/10.1016/j.rse.2006.02.010
- Lu, D. and Q. Weng, 2007. A survey of image classification methods and techniques for improving classification performance, International Journal of Remote Sensing, 28(5): 823-870. https://doi.org/10.1080/01431160600746456
- Phinn, S., M. Stanford, P. Scarth, A.T. Murray, and P.T. Shyy, 2002. Monitoring the composition of urban environments based on the Vegetationimpervious surface-Soil (V-I-S) model by subpixel analysis techniques, International Journal of Remote Sensing, 23: 4131-4153. https://doi.org/10.1080/01431160110114998
- Powell, R.L., D.A. Roberts, P.E. Dennison, and L.L. Hess, 2007. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil, Remote Sensing of Environment, 106: 253-267. https://doi.org/10.1016/j.rse.2006.09.005
- Ridd, M.K., 1995. Exploring a V-I-S (Vegetation-Impervious Surface-Soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities, International Journal of Remote Sensing, 16 (12): 2165-2185. https://doi.org/10.1080/01431169508954549
- Roberts, D.A., M. Gardner, R. Church, S. Ustin, and R.O. Green, 1998. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models, Remote Sensing of Environment, 65: 267-279. https://doi.org/10.1016/S0034-4257(98)00037-6
- Sawaya, K.E., L.G. Olmanson, N.J. Heinert, P.L. Brezonik, and M.E. Bauer, 2003. Extending satellite remote sensing to local scales: land and Water resource monitoring using highresolution imagery, Remote Sensing of Environment, 88(12): 144-156. https://doi.org/10.1016/j.rse.2003.04.006
- Shackelford, A.K. and C.H. Davis, 2003. A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas, Ieee Transactions on Geoscience and Remote Sensing, 41(10): 2354-2363. https://doi.org/10.1109/TGRS.2003.815972
- Stehman, S.V., 1996. Estimating the Kappa coefficient and its variance under stratified random sampling, Photogrammetry and Remote Sensing, 62(4): 401-407.
- Weng, Q., 2010. Remote sensing and GIS integration:Theories, Methods, and Applications, New York: McGrewHill.
- Weng, Q., 2012. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends, Remote Sensing of Environment, 117: 34-49. https://doi.org/10.1016/j.rse.2011.02.030
- Wenze, Y., S. Jianhua, W. Jiawei and X. Lihua, 2006. Remote sensing of spatial patterns of urban renewal using linear spectral mixture analysis:a case of central urban area of Shanghai (1997-2000), Chinese Science Bulleting, 51(8): 977-986. https://doi.org/10.1007/s11434-006-0977-8
- Wu, C.S. and A.T. Murray, 2003. Estimating impervious surface distribution by spectral mixture analysis, Remote Sensing of Environment, 84: 493-505. https://doi.org/10.1016/S0034-4257(02)00136-0
- Wu, C., 2004. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery, Remote Sensing of Environment, 93: 480-492. https://doi.org/10.1016/j.rse.2004.08.003
- Wu, C.S. and A.T. Murray, 2007. Population estimation using Landsat Enhanced Thematic Mapper imagery, Geographical Analysis, 39(1): 26-43. https://doi.org/10.1111/j.1538-4632.2006.00694.x
- Xian, G. and M. Crane, 2005. Assessments of urban growth in the Tampa Bay watershed using remote sensing data, Remote Sensing of Environment, 97: 203-215. https://doi.org/10.1016/j.rse.2005.04.017
- Xian, G., 2008. Mapping impervious surface using classification and regression tree algorithm, In: Remote sensing of impervious surfaces, Weng, Q. (Editor) Taylor, Boca Raton Florida, pp.39-58.
- Yuan, F. and M.E. Bauer, 2006. Mapping impervious surface area using high resolution imagery: A Comparison of object-based and per pixel classification, Proc. of American Society for Photogrammetry & Remote Sensing 2006 Annual Conference Reno and Nevada, May. 1-5, (Reno, Nevada), pp. 1-8.
- Zhan, Q., M. Molenaar and K. Tempfli, 2002. Hierarchical image object-based structural analysis toward urban land use classification using high-resolution imagery and airborne LIDAR data, Proc. of the Remote Sensing and Data Fusion over Urban Areas, IEEE/ISPRS Joint Workshop, pp. 251-258.
- Zhou, W., A.R. Troy, and J.M. Grove, 2006. Measuring urban parcel lawn greenness by using an objectoriented classification approach, Geoscience and Remote Sensing Symposium in IEEE International Conference, Jul. 31- Aug. 4, Denver, CO, pp. 2693-2696.
- Zhou, W., A.R. Troy, and J.M. Grove, 2008. Objectbased land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data, Sensors, 8: 1613-1636.