DOI QR코드

DOI QR Code

[Retracted]Gas Mask Removal Efficiency of CO, HCl, HCN, and SO2 Gas Produced by Fire

[논문철회]화재용 방독면의 CO, HCl, HCN, SO2 연소생성물 제거효율

  • Received : 2015.06.30
  • Accepted : 2015.08.12
  • Published : 2015.08.31

Abstract

The removal efficiencies by elastic fire gas mask of toxic gases CO, HCl, HCN, and $SO_2$ produced by a fire have a key role in saving lives. The elastic fire gas mask comprises a visible window, elastic hood, gas purification canister, and air vent. It does not have hair or neck thongs, which makes it easy to use and put on quickly. This research examined the removal efficiency of toxic gases by such a mask. The removal efficiencies for CO with a background concentration of 2505.0 ppm were 99.99 and 99.98% after 3.5 and 8.5 min, respectively. The residual CO concentration was drastically increased after 8.5 min. The removal efficiencies for HCl, HCN, and $SO_2$ with background concentrations of 1003.0, 399.0, and 100.3 ppm, respectively, were 100% after 20 min.

화재 시 발생하는 독성 가스인 CO, HCl, HCN, $SO_2$를 방독면에 의해 제거하는 효율은 화재로 인한 인명구조의 핵심 요소이다. 머리와 목끈이 없는 탄력있는 방독면은 전방을 주시할 수 있는 창, 탄력후드, 가스정화기와 공기 환풍구로 되어 있어서 화재 시 빠르고 쉽게 착용할 수 있다. 이 연구에서는 이러한 방독면의 CO, HCl, HCN, $SO_2$ 제거 효율에 대한 연구를 진행하였다. 실험결과 CO 제거 효율은 최초 농도가 2505.0 ppm인 경우 3.5분 후에 99.99%였고, 8.5분 후에는 99.98%로 나타났다. 8.5분 후에는 CO 농도가 급격히 증가하는 특성을 보였다. HCl, HCN, $SO_2$에 대해서는 최초 농도가 각각 1003.0, 399.0, 100.3 ppm인 경우 20분 동안 제거 효율이 100%로 나타났다.

Keywords

References

  1. K. J. Jang, "Fire and Biological War for Gas Mask", Air Freshener Technology, Vol. 24, No. 3, p. 18 (2011).
  2. M. C. Choi and B. S. Kim, "A Study on the Ways to Minimize Casualties through a Consideration of the CO Gas Generated During Combustion", Journal of Korea Safety Management & Science, Vol. 15, No. 1, p. 136 (2013).
  3. H. S. Kong, D. J. Kim, C. H. Bang, I. S. Bae, Y. S. Back, D. Y. Ahn, S. C. Woo, I. R. Jun, et al., "Fire Protection Theory", Daegu: Yesmedia Ltd., pp. 1-19 (2014).
  4. J. G. Won and J. S. Lee, "A Study on the Development of Portable Life Protective Mask", Journal of the Korean Society of Urban Environment, Vol. 14. No. 2, pp. 145-153 (2014).
  5. S. S. Park and H. S. Lee, "A Study of Problems with Design of Gasmask Storage Cabinets in Subway Stations", Journal of Korea Design Knowledge Society, p. 126 (2011).
  6. Y. J. Oh and S. J. Park, "The Facial Anthropometry with 3D Head Scanner Korean Gas Mask", Proceedings of Conference, Korea CAD/CAM Review, p. 404 (2010).
  7. J. Y. Lee, J. S. Park and W. Y. Jang, "Development of Gas-mask Spectacles", Journal of Korean Ophthalmic Optics Society, Vol. 13, No. 4, pp. 9-12 (2008).
  8. J. Y. Lee, J. H. Kim, Y. H. Kim and K. C. Jung, "A Study on Toxicity Evaluation of Combustion Gases Released from the Residental Container Fire Efficiency Test for the Fire Gas Mask Filters", Journal of the Korean of Safety, Vol. 19, No. 4, p. 48 (2004).
  9. M. C. Choi and B. S. Kim, "A Study on the Ways to Minimize Casualties through a Consideration of the CO Gas Generated During Combustion", Journal of Korea Safety Management & Science, Vol. 15, No. 1, pp. 133-140 (2013). https://doi.org/10.12812/ksms.2013.15.1.133
  10. ISO 19702:2006(en) Toxicity testing of fire effluents - Guide for analysis of gases and vapours in fire effluents using FTIR gas analysis.
  11. J. S. Kim, H. J. Shin, J. Y. Kim and B. J. Park, "Development of Technology to Secure Refuge Space by Using Existing Restroom", Korean J. Air-Conditioning Refrigeration Eng., Vol. 27, No. 1, pp. 24-30 (2015). https://doi.org/10.6110/KJACR.2015.27.1.024
  12. D. Sawifri and A. Lasryza, "Utilization of Coal Fly Ash as CO Gas Adsorbent", International J. of Waste Resources, Vol. 2, pp. 13-15 (2012).
  13. J. V. Romero, J. W. SmithH, B. M. Sullivan, L. M. Croll and J. R. Dahn, "$SO_2$ and $NH_3$ Gas Adsorption on a Ternary $ZnO/CuO/CuCl_2$ Impregnated Activated Carbon Evaluated Using Combinatorial Methods", ACS Combinatorial Sci., Vol. 14, No. 1, pp. 31-37 (2012). https://doi.org/10.1021/co200127g
  14. E. Barea, C. Montoro and J. A. R. Navarro, "Toxic Gas Removal-metal-organic Frameworks for the Capture and Degradation of Toxic Gases and Vapours", Chem. Soc. Rev., Vol. 43, pp. 5419-5430 (2014). https://doi.org/10.1039/C3CS60475F
  15. B. J. Kim, H. Park and S. J. Park, "Toxic Gas Removal Behaviors of Porous Carbons in the Presence of Ag/Ni Bimetallic Clusters", Vol. 29, No. 4, pp. 782-784 (2008). https://doi.org/10.5012/bkcs.2008.29.4.782
  16. S. V. Manyele, "Toxic Gas Absorber Design Considerations for Air Pollution Control in Process Industries", Educ. Res. Rev., Vol. 3, No. 4, pp. 137-147 (2008).