DOI QR코드

DOI QR Code

Sensitivity Analyses of Three-Dimensional Discrete Fracture Network Modeling of Rock Mass

암반의 3차원 불연속균열망(DFN)에 관한 연구 및 민감도분석

  • 박정찬 (인하대학교 에너지자원공학과) ;
  • 박승훈 (인하대학교 에너지자원공학과) ;
  • 김하영 (인하대학교 에너지자원공학과) ;
  • 김건영 (한국원자력연구원) ;
  • 권상기 (인하대학교 에너지자원공학과)
  • Received : 2015.06.16
  • Accepted : 2015.08.11
  • Published : 2015.08.31

Abstract

This study analyzes the relationship between parameters of the discontinuity in Discrete Fracture Network model such as fracture intensity, fracture orientation, fracture size, fracture shape etc. In this paper, FracMan code was used to model and analyze 3D DFN. A sensitivity analysis was performed in order to analyze the relationship between linear fracture intensity measure ($P_{10}$) and parameters of the discontinuity in $100m{\times}100m{\times}100m$ model area. As a result the sensitivity analysis showed that key parameters affecting fracture intensity are fracture orientation (Trend / Plunge). Conversion factor($C_{13}$) for $P_{10}$, to calculate volumetric fracture intensity measure ($P_{32}$), is derived in case of vertical well and horizontal well when trend is $10^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$, $180^{\circ}$ (7cases) and plunge is $5^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, $85^{\circ}$ (7cases). It is expected that this paper can be used effectively for modeling and understanding DFN model.

본 연구에서는 불연속암반의 모사기법인 3차원 불연속균열망(Discrete Fracture Network, DFN)모델의 구성 및 해석 코드인 FracMan을 이용하여, DFN모델에서의 불연속면의 밀도(fracture intensity), 불연속면의 방향성(fracture orientation), 불연속면의 크기(fracture size), 불연속면의 모양(fracture shape) 등의 불연속면의 특성인자간의 관계를 분석하고자 하였다. $100m{\times}100m{\times}100m$ 모델영역에서 균열의 선형밀도($P_{10}$)와 불연속면을 구성하는 인자 간의 상관관계 분석을 위해 민감도 분석을 수행하였다. 본 연구 결과, 불연속면의 밀도에 가장 큰 영향을 미치는 인자로는 불연속면의 방향성 인자인 선주향(Trend)과 선경사(Plunge)로 나타났다. 불연속면의 체적밀도($P_{32}$)의 계산을 위해서 불연속면의 선주향이 $10^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$, $180^{\circ}$인 7가지 경우와 선경사가 $5^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, $85^{\circ}$인 7가지 경우에서의 수직, 수평시추일 경우에 관한 $P_{10}$의 환산인자($C_{13}$)를 도출하였다. 본 연구의 결과가 불연속균열망 모델을 구성하고 이해하는 데 효과적으로 사용될 수 있을 것이다.

Keywords

References

  1. Alexander, T., Baihly, J., Boyer, C., Waters, G., Clark, B., Jochen, V., Calvez, J. L., Lewis, R., Miller, C. K., Thaeler, J., and Toelle, B. E., 2011, Shale Gas Revolution, Oilfield Review, No.3, pp. 40-55.
  2. Baecher, G. B., Lanney, N. A., and Einstein, H. H., 1977, statistical description of rock properties and sampling. Proceedings, the 18th US Symposium on Rock Mechanics (USRMS), pp. 5C1_1-5C1_8.
  3. Cladouhos, T. T., and Marrett, R., 1996, Are fault growth and linkage models consistent with power-law distributions of fault length?, J. struct. Geol. 18, pp. 281-293. https://doi.org/10.1016/S0191-8141(96)80050-2
  4. Cottrell, M. G., "Keynote Presentation: Managing The Environmental Risk and Financial Gain Associated with Shale Gas Hydraulic Fracturing using a Discrete Fracture Network Approach", IWA World Congress on Water, Climate and Energy, presentation Dublin Ireland, May 2012.
  5. Dershowitz, William S., Ambrose, R., Lim, D. H., and Cottrell, M. G., 2011, Hydraulic Fracture and Natural Fracture Simulation for Improved Shale Gas Development, American Association of Petroleum Geologists (AAPG) Annual Conference and Exhibition, Houston, United States.
  6. Dershowitz, William S., and Herda, H. H., 1992, Interpretation of fracture spacing and intensity, Rock mechanics, pp. 757-766.
  7. Einstein, H. H., and Baecher, G. B., 1983, Probabilistic and statistical methods in engineering geology, specific methods and examples, part I:exploration. In: Rock Mechanics and Rock Engineering, Vol. 16, pp. 39-72. https://doi.org/10.1007/BF01030217
  8. Fisher, R., 1953, Dispersion on a sphere, Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, Vol. 217, No. 1130.
  9. Fox, A., La Pointe, P., Hermanson, J., and Ohman, J., 2007, Statistical geological discrete fracture network model. Forsmark modeling stage 2.2. Report R-07-46, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm, Sweden.
  10. Hatton, C. G., Main, I. G., and Meredith, P. G., 1994, Non-universal scaling of fracture length and opening displacement. Nature 356, pp. 160-162.
  11. Jing, L. and Stephansson, O., 2007, Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications, Elsevier, pp. 158.
  12. Kim, D. H., 2013, A Study on the Hydrogeological Modelling of the Rockmass of a Limestone Mine, M.S. Dissertation, Kangwon National University.
  13. Kulatilake, P. H. S. W., Wathugala, D. N., and Stephansson, O., 1993, Stochastic three dimensional joint size, intensity and system modelling and a validation to an area in stripa Mine, sweden. Soils Found. 33, pp. 55-70. https://doi.org/10.3208/sandf1972.33.55
  14. Kwon, S. K., Lee, C. S., Yoon, C. H., Jeon, S. W., and Cho, W. J., 2011, Borehole Heater Test at KAERI Underground Research Tunnel, Tunnel and underground space, Vol. 21, No. 3, pp. 225-234.
  15. Lee, Y. H., Shin, H. J., Kim, K, I., and Sim, T. M., 1999, Characterization of Fracture System for Comprehensive Safety Evaluation of Radioactive Waste Disposal Site in Subsurface Rockmass, Journal of the Korean Society of Groundwater Environment, Vol.6, No.3, pp. 111-119.
  16. Lim, D. H., Kim, J. Y., and Park, J. W., 2011, Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea - PHASE I: Model development, J. of the Korean Radioactive Waste Society, 9 (2).
  17. Long, J. C. S., Karasaki, K., Davey, A., Peterson, J., Landsfeld, M., Kemeny, J., and Martel, S., 1991, "An Inverse Approach to the Construction of Fracture Hydrology Models Conditioned by Geophysical Data: An Example from the Validation Exercises at Stripa Mine." International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 28, No. 2, pp. 121-142. https://doi.org/10.1016/0148-9062(91)92162-R
  18. Long, J. C. S., Remer, J. S., Wilson, C. R., and Witherspoon, P. A., 1982, Porous media equivalents for networks of discontinuous fractures, Water Resource Research, 18.3, pp. 645-658. https://doi.org/10.1029/WR018i003p00645
  19. Min, K. B., and O. Stephansson, 2011, The DFN-DEM Approach Applied to investigate the Effects of Stress on Mechanical and Hydraulic Rock Mass Properties at Forsmark, Sweden, Tunnel and underground space, Vol. 21, No. 2, pp. 117-127.
  20. Nelson, R. A., 2001, Geologic Analysis of Naturally Fractured Reservoirs, 2nd Ed., Gulf Professional Publishing, Boston, USA.
  21. Noh, Y. H., Choi, Y. S., Um, J. G., and Hwang, S. Y., 2013, Development of the 3-D Fracture Network Analysis and Visualization Software Modules, Tunnel and underground space, Vol. 23, No. 4, pp. 261-270. https://doi.org/10.7474/TUS.2013.23.4.261
  22. Park, C. K., Lee, J. K., Baik, M. H., Lee, Y. M., Ko, N. Y., and Jeong, J. T., 2012, Production and Application of Domestic Input Data for Safety Assessment of Disposal, Journal of the Korean Radioactive Waste Society, Vol. 10, No. 3, pp. 161-170. https://doi.org/10.7733/jkrws.2012.10.3.161
  23. Park, J. S., Ryu, D. W., Ryu, C. H., and Lee, C. I., 2007, Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone, Tunnel and underground space, Vol. 17, No. 2, pp. 109-118.
  24. Priest, S. D., 1993, Discontinuity Analysis for Rock Engineering, Chapman & Hall, London.
  25. Priest, S. D., and Hudson, J. A., 1981, Estimation of discontinuity spacing and trace length using scanline surveys. Int.J. Rock Mech. Min. Sci. Geomech. Abstr. pp. 183-197.
  26. Rogers, S, Elmo, D., Webb, G., and Catalan, A., 2015, Volumetric Fracture Intensity Measurement for Improved Rock Mass Characterisation and Fragmentation Assessment in Block Caving Operations, Rock Mechanics and Rock Engineering, Vol.48, Issue 2, pp. 633-649. https://doi.org/10.1007/s00603-014-0592-y
  27. Seo, J. W., 2009, Development of 3D DFN model with Rectangular fracture type, The Korean Society of Mineral and Energy Resources Engineers, Vol.46, No.3, pp. 279-288.
  28. Wang, X., 2005, Stereological interpretation of rock fracture traces on borehole walls and other cylindrical surfaces, Ph.D Dissertation, Virginia Polytechnic Institute and State University.
  29. Warren, J. E., and Root, P. J., 1963, The behavior of naturally fractured reservoirs, Society of Petroleum Engineers journal, 3.03, pp. 245-255. https://doi.org/10.2118/426-PA