DOI QR코드

DOI QR Code

Effects of Geometric Parameters of a Bobsleigh on Aerodynamic Performance

봅슬레이의 형상변화가 공력성능에 미치는 영향

  • Shim, Hyeon-Seok (Dept. of Mechanical Engineering, Graduate school, Inha Univ.) ;
  • Jung, Hyo-Yeon (Dept. of Mechanical Engineering, Undergraduate school, Inha Univ.) ;
  • Kim, Jun-Hee (Dept. of Mechanical Engineering, Graduate school, Inha Univ.) ;
  • Kim, Kwang-Yong (Dept. of Mechanical Engineering, Inha Univ.)
  • 심현석 (인하대학교 대학원 기계공학과) ;
  • 정효연 (인하대학교 기계공학과) ;
  • 김준희 (인하대학교 대학원 기계공학과) ;
  • 김광용 (인하대학교 기계공학부)
  • Received : 2015.01.29
  • Accepted : 2015.08.04
  • Published : 2015.09.01

Abstract

Analysis of the aerodynamic performance of a bobsleigh has been performed for various types of bobsleigh body shape. To analyze the aerodynamic performance of the bobsleigh, three-dimensional Reynolds-averaged Navier-Stoke equations were used with the standard k-${\varepsilon}$ model as a turbulence closure. Grid structure was composed of unstructured tetrahedral grids. The radii of curvature of cowling, and height and length of front bumper at the tip on the drag coefficient were selected as geometric parameters. And, the effects of these parameters on the aerodynamic performance, i.e., the drag coefficient, were evaluated. The results shows that the aerodynamic performance is significantly affected by the height of front bumper and radius of curvature.

본 연구에서는 다양한 형상변수들이 봅슬레이의 공력성능에 미치는 영향을 평가하기 위하여 삼차원 Reynolds-averaged Navier-Stoke 해석을 수행하였으며, 난류모델로는 표준 k-${\varepsilon}$ 모델이 사용하였다. 격자계로는 비정렬 사면체 격자를 사용하였다. 성능 평가를 위한 형상변수로는 전방범퍼의 장축의 길이, 범퍼의 높이, 그리고, 카울링 측면과 정면 각각에서의 곡률반경 등 네가지 변수를 설정하였으며. 이들이 공력성능으로 선정된 항력계수에 미치는 영향을 평가하였다. 해석결과, 범퍼의 높이와 카울링 측면의 곡률반경이 항력계수에 민감한 영향을 미침을 알 수 있었다.

Keywords

References

  1. Berton, E., Favier, D., Agnes, A. and Pous, F., 2004, "Aerodynamic Optimization of a Bobsleigh Configuration", International Journal of Applied Sports Sciences, Vol. 16, No. 1, pp. 1-13.
  2. Chowdhury, H., Alam, F., Arena, S. and Mustary, I., 2013, "An experimental study of airflow behaviour around a standard 2-man bobsleigh", 6th Asia-Pacific Congress on Sports Technology (APCST), Vol. 60, pp. 479-484.
  3. Lewis, O., 2006, "Aerodynamic analysis of a 2-man bobsleigh", Master of Science Thesis, TU Delft, Netherlands.
  4. International Rules, 2005, FIBT.
  5. CFX-15.0 Solver Theory, 2013, Ansys Inc.
  6. B.E. Launder and D.B. Spalding, 1974, "The Numerical Computation of Turbulent Flows", Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp.269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  7. ICEM CFD-15.0, 2013, Ansys Inc.