DOI QR코드

DOI QR Code

Thermodynamic Performance Analysis of Regenerative Organic Rankine Cycle using Turbine Bleeding

터빈 추기를 이용한 재생 유기랭킨사이클의 열역학적 성능 해석

  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • HWANG, SEON (School of Mechanical Engineering, Yongnam University) ;
  • KIM, MAN-HOE (School of Mechanical Engineering, Kyungpook National University)
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 황선 (영남대학교 기계공학부) ;
  • 김만회 (경북대학교 기계공학부)
  • Received : 2015.07.13
  • Accepted : 2015.08.30
  • Published : 2015.08.30

Abstract

This paper presents a thermodynamic performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding to utilize low-grade finite thermal energy. Refrigerant R245fa was selected as the working fluid. Special attention is paid to the effects of the turbine bleeding pressure and the turbine bleed fraction on the thermodynamic performance of the system such as net power production and thermal efficiency. Results show that the thermal efficiency has an optimum value with respect to the turbine bleeding pressure and the net power production is lower than the basic ORC while the thermal efficiency is higher.

Keywords

References

  1. K. H. Kim, C. H. Han, and K. Kim, Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles, Thermochimica Acta, Vol. 530, pp. 7-16, 2012. https://doi.org/10.1016/j.tca.2011.11.028
  2. K. H. Kim, H. J. Ko, and K. Kim, Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles, Applied Energy, Vol. 113, pp. 970-981, 2014. https://doi.org/10.1016/j.apenergy.2013.08.055
  3. K. H. Kim, and K. C. Kim, Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy, Applied Thermal Engineering, Vol. 70, pp. 50-60, 2014. https://doi.org/10.1016/j.applthermaleng.2014.04.064
  4. V. A. Bao, and L. Zhao, A Review of Working Fluid and Expander Selections for Organic Rankine Cycle, Renewable and Sustainable Energy Reviews, Vol. 24, pp. 325-342, 2013. https://doi.org/10.1016/j.rser.2013.03.040
  5. S. Quoilin, M. V. D. Broek, S. Declaye, P. Dewallef, and V. Lemort, Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems, Renewable and Sustainable Energy Reviews, Vol. 22, pp. 164-186, 2013.
  6. T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, and K. F. Tsai, A study of organic working fluids on system efficiency of an ORC using low-grade energy sources, Energy, Vol. 35, pp. 1403-1411, 2010. https://doi.org/10.1016/j.energy.2009.11.025
  7. N. A. Lai, M. Wendland, and J. Fisher, Working fluids for high temperature organic Rankine cycle, Energy, Vol. 36, pp. 199-211, 2011. https://doi.org/10.1016/j.energy.2010.10.051
  8. J. M. Lujan, J. R. Serrano, V. Dolz, and J. Sanchez, Model of the expansion process for R145fa in an organic Rankine cycle (ORC), Applied Thermal Engineering, Vol. 40, pp. 248-257, 2012. https://doi.org/10.1016/j.applthermaleng.2012.02.020
  9. Y. Dai, J. Wang, and L. Gao, Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery, Energy Conversion and Management, Vol. 50, pp. 576-582, 2009. https://doi.org/10.1016/j.enconman.2008.10.018
  10. F. Heberle, and D. Brueggemann, Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation, Applied Thermal Engineering, Vol. 30, pp. 1326-1332, 2010. https://doi.org/10.1016/j.applthermaleng.2010.02.012
  11. B. F. Tchanche, G. Papadakis, and A. Frangoudakis, Fluid selection for a low- temperature solar organic Rankine cycle, Applied Thermal Eng., Vol. 29, pp. 2468-2476, 2009. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  12. A. M. Delgado-Torres, and Garcia-Rodriguez, Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC), Energy Conversion and Management, Vol. 51, pp. 2846-2856, 2010. https://doi.org/10.1016/j.enconman.2010.06.022
  13. K. H. Kim, Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle, Transaction of Korean Society of Mechanical Engineering, B, Vol. 37, pp. 1137-1145, 2013. https://doi.org/10.3795/KSME-B.2013.37.12.1137
  14. K. H. Kim and H. Perez-Blanco, "Performance Analysis of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Power and Refrigeration Cogeneration," App. Therm. Eng., 2015, in press.
  15. K. H. Kim, and C. H. Han, Analysis of transcritical organic Rankine cycles for low-grade heat conversion. Advance Science Letters, Vol. 8, pp. 216-221, 2012. https://doi.org/10.1166/asl.2012.2404
  16. S. Lecompte, H. Huisseune, M. van den Broek, B. Vanslambrouck, and Paepe M. De, Review of organic Rankine cycle (ORC) architectures for waste heat recovery, Renewable and Sustainable Energy review, Vol. 47, pp. 448-461, 2015. https://doi.org/10.1016/j.rser.2015.03.089
  17. P. J. Mago, L. M. Chamra, K. Srinivasan, and C. Somayaji, An examination of regenerative organic Rankine cycles using dry fluids, Applied Thermal Engineering, Vol. 28, pp. 998-1007, 2008. https://doi.org/10.1016/j.applthermaleng.2007.06.025
  18. N. B. Desai, and S. Bandyopadhyay, Process integration of organic Rankine cycle," Energy, Vol. 34, pp. 1674-1686, 2009. https://doi.org/10.1016/j.energy.2009.04.037
  19. D. Meinel, C. Wieland, and Spliethoff, Effect and comparison of different working fluids on a two-stage organic rankine cycle (ORC) concept, Applied Thermal Engineering, Vol. 63, pp. 246-253, 2014. https://doi.org/10.1016/j.applthermaleng.2013.11.016
  20. T. Yang, G. J. Chen, and T. M. Guo, Extension of the Wong-Sandler mixing rule to the three- parameter Patel-Teja equation of state: Application up to the near-critical region, Chemical Engineering Journal, Vol. 67, pp. 27-36, 1997. https://doi.org/10.1016/S1385-8947(97)00012-0
  21. J. Gao, L. D. Li, Z. Y. Zhu, and S. G. Ru, Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule, Fluid Phase Equilibria, Vol. 224, pp. 213-219, 2004. https://doi.org/10.1016/j.fluid.2004.05.007
  22. C. L. Yaws, Chemical properties handbook, McGraw-Hill, 1999.