A FUNCTIONAL APPROACH TO d-ALGEBRAS

Keum Sook So

Abstract

In this paper we discuss a functional approach to obtain a lattice-like structure in d-algebras, and obtain an exact analog of De Morgan law and some other properties.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras $([8,9]) . B C K$-algebras have some connections with other areas: D. Mundici [13] proved that $M V$-algebras are categorically equivalent to bounded commutative $B C K$-algebras, and J. Meng [11] proved that implicative commutative semigroups are equivalent to a class of $B C K$-algebras. It is well known that bounded commutative $B C K$-algebras, D-posets and $M V$-algebras are logically equivalent each other (see [4, p. 420]). We refer useful textbooks for $B C K / B C I$-algebra to [4, $6,7,12,17]$. J. Neggers and H. S. Kim ([14]) introduced the notion of d-algebras which is a useful generalization of $B C K$-algebras, and then investigated several relations between d-algebras and $B C K$-algebras as well as several other relations between d-algebras and oriented digraphs. J. S. Han et al. ([5]) defined a variety of special d-algebras, such as strong d-algebras, (weakly) selective d-algebras and others. The main assertion is that the squared algebra ($X ; \square, 0$) of a d-algebra is a d-algebra if and only if the root $(X ; *, 0)$ of the squared algebra $(X ; \square, 0)$ is a strong d-algebra. Recently, the present author with H. S. Kim and J. Neggers ([10]) explored properties of the set of d-units of a d-algebra. It was noted that many d-algebras are weakly associative, and the existence of non-weakly associative $d / B C K$-algebras was demonstrated. Moreover, they discussed the notions of a d integral domain and a left-injectivity in $d / B C K$-algebras. We refer to $[1,2,15,16]$ for more information on d-algebras.

[^0]In this paper we discuss a functional approach to obtain a lattice-like structure in d-algebras, and obtain an exact analog of De Morgan law and some other properties.

2. Preliminaries

An (ordinary) d-algebra ([14]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(D1) $x * x=0$,
(D2) $0 * x=0$,
(D3) $x * y=0$ and $y * x=0$ imply $x=y$ for all $x, y \in X$.
A $B C K$-algebra is a d-algebra X satisfying the following additional axioms:
$(\mathrm{D} 4)(x * y) *(x * z)) *(z * y)=0$,
(D5) $(x *(x * y)) * y=0$ for all $x, y, z \in X$.
Example 2.1 ([14]). Consider the real numbers R, and suppose that ($\mathbf{R} ; *$, e) has the multiplication

$$
x * y=(x-y)(x-e)+e
$$

Then $x * x=e ; e * x=e ; x * y=y * x=e$ yields $(x-y)(x-e)=0,(y-x)(y-e)=e$ and $x=y$ or $x=e=y$, i.e., $x=y$, i.e., $(\mathbf{R} ; *, e)$ is a d-algebra.

3. A Functional Approach to d-algebras

Let $(X, *, 0)$ be a d-algebra. A map $\varphi: X \rightarrow X$ is said to be order reversing if $x * y=0$ then $\varphi(y) * \varphi(x)=0$ for all $x, y \in X$; self-inverse if $\varphi(\varphi(x))=x$ for all $x \in X$; an anti-homomorphism if $\varphi(x * y)=\varphi(y) * \varphi(x)=0$ for all $x, y \in X$; a homomorphims if $\varphi(x * y)=\varphi(x) * \varphi(y)$ for all $x, y \in X$.

Example 3.1. Consider $X:=\{0, a, 1\}$ with

$*$	0	a	1
0	0	0	0
a	a	0	0
1	1	a	0

Then $(X ; *, 0)$ is a d-algebra. If we define a $\operatorname{map} \varphi: X \rightarrow X$ by $\varphi(0)=1, \varphi(a)=a$ and $\varphi(1)=0$, then it is easy to see that φ is both self-inverse and order reversing, but it is not an anti-homomorphism, since $\varphi(a * 1)=\varphi(0)=1$ and $\varphi(1) * \varphi(a)=0 * a=0$.

Moreover, it is not a homomorphism, since $\varphi(0 * a)=\varphi(0)=1 \neq a=1 * a=$ $\varphi(0) * \varphi(a)$.

Proposition 3.2. Let $(X, *, 0)$ be a d-algebra. If $\varphi: X \rightarrow X$ is a (anti-) homomorphism, then $\varphi(0)=0$.

Proof. Since X is a d-algebra, by $(D 1)$, we obtain $\varphi(0)=\varphi(x * x)=\varphi(x) * \varphi(x)=$ 0 .

Proposition 3.3. If $(X, *, 0)$ is a d-algebra, then every anti- homomorphism is order reversing.

Proof. Let $\varphi: X \rightarrow X$ be an anti-homomorphism. If we assume that $x * y=0$, then $\varphi(y) * \varphi(x)=\varphi(x * y)=\varphi(0)=0$ by Proposition 3.2. This proves the proposition.

Remark. The converse of Proposition 3.3 need not be true in general. In Example 3.1, the mapping φ is an order reversing, but not an anti-homomorphism.

Let $(X, *, 0)$ be a d-algebra and let $\varphi: X \rightarrow X$ be a map. We denote by $1:=\varphi(0)$.
Proposition 3.4. Let $(X, *, 0)$ be a d-algebra and let $\varphi: X \rightarrow X$ be both order reversing and self-inverse. Then $(X, *, 0)$ is bounded.

Proof. Given $x \in X$, we have

$$
\begin{aligned}
x * 1 & =x * \varphi(0) & & {[1=\varphi(0)] } \\
& =\varphi(\varphi(x)) * \varphi(0) & & {[\varphi: \text { self-inverse }] } \\
& =0 & & {[\varphi: \text { order reversing }] }
\end{aligned}
$$

Let $(X, *, 0)$ be a d-algebra. We define a relation " \leq " on X by $x \leq y$ if and only if $x * y=0$ for all $x, y \in X$. Note that the relation \leq need not be a partial order on X. We define a relation " \wedge on X by $x \wedge y:=x *(x * y)$) for all $x, y \in X$.

Proposition 3.5. Let $(X, *, 0)$ be a d-algebra. If $\varphi: X \rightarrow X$ is self-inverse, then $\varphi(1)=0$.

Proof. It follows from φ is self-inverse that $0=\varphi(\varphi(0))=\varphi(1)$.
Theorem 3.6. Let $(X, *, 0)$ be a d-algebra and let $\varphi: X \rightarrow X$ be a self-inverse
map. If we define $x \vee y:=\varphi[\varphi(y) \wedge \varphi(x)]$, then

$$
\varphi(x \wedge y)=\varphi(y) \vee \varphi(x)
$$

for all $x, y \in X$.
Proof. Given $x, y \in X$, we have

$$
\begin{array}{rlrl}
\varphi(x \wedge y) & =\varphi[\varphi(\varphi(x)) \wedge \varphi(\varphi(y))] & & \text { [} \varphi: \text { self-inverse }] \\
& =\varphi[\varphi(a)) \wedge \varphi(b)] & {[a=\varphi(x), b=\varphi(y)]} \\
& =b \vee a &
\end{array}
$$

Theorem 3.6 shows that the first De Morgan's law implies the analog of the second De Morgan's law and conversely, since $x \vee y \neq y \vee x$ in general. Moreover, it follows that $x \wedge y=\varphi(\varphi(x \wedge y))=\varphi[\varphi(y) \vee \varphi(x)]$ for all $x, y \in X$.

Theorem 3.7. Let $(X, *, 0)$ be a d-algebra with

$$
\begin{equation*}
x * 0=x \tag{1}
\end{equation*}
$$

for all $x \in X$. If $\varphi: X \rightarrow X$ is a self-inverse map, then $x \vee x=x$ and $x \wedge x=x$ for all $x \in X$.

Proof. (i). Given $x \in X$, we have

$$
\begin{align*}
x \vee x & =\varphi[\varphi(x) \wedge \varphi(x)] \tag{Theorem3.6}\\
& =\varphi[\varphi(x) *(\varphi(x) * \varphi(x)] \\
& =\varphi(\varphi(x) * 0) \tag{D1}\\
& =\varphi(\varphi(x)) \tag{1}\\
& =x
\end{align*}
$$

[φ : self-inverse]
(ii). $x \wedge x=x *(x * x)=x * 0=x$.

Proposition 3.8. Let $(X, *, 0)$ be a d-algebra with

$$
\begin{equation*}
(x * y) * z=(x * z) * y \tag{2}
\end{equation*}
$$

for all $x, y, z \in X$. Then $x \wedge y \leq x$ and $x \wedge y \leq y$ for all $x, y \in X$.
Proof. (i). Given $x, y \in X$, by applying (2), we obtain

$$
\begin{aligned}
(x \wedge y) * a & =(x *(x * y)) * a \\
& =(x * x) *(x * y) \\
& =0 *(x * y) \\
& =0
\end{aligned}
$$

(ii). Given $x, y \in X$, we have $(x \wedge y) * y=(x *(x * y)) * y=(x * y) *(x * y)=0$.

Theorem 3.9. Let $(X, *, 0)$ be a d-algebra with the condition (2). If $\varphi: X \rightarrow X$ is a self-inverse anti-homomorphism, then $x *(x \vee y)=1$ and $y *(x \vee y)=1$ for all $x, y \in X$.

Proof. (i). Since $\varphi: X \rightarrow X$ is a self-inverse anti-homomorphism, for all $x, y \in X$, we obtain

$$
\begin{aligned}
x *(x \vee y) & =x * \varphi(\varphi(y) \wedge \varphi(x)) \\
& =x * \varphi[\varphi(y) *(\varphi(y) * \varphi(x))] \\
& =\varphi(\varphi(x)) * \varphi[\varphi(y) *(\varphi(y) * \varphi(x))] \\
& =\varphi[[\varphi(y) *(\varphi(y) * \varphi(x))] * \varphi(x)] \\
& =\varphi[[(\varphi(y) * \varphi(x)) *(\varphi(y) * \varphi(x))]] \\
& =\varphi(0) \\
& =1
\end{aligned}
$$

and

$$
\begin{aligned}
y *(x \vee y) & =\varphi(\varphi(x)) * \varphi[\varphi(y) *(\varphi(y) * \varphi(x))] \\
& =\varphi[[\varphi(y) *(\varphi(y) * \varphi(x))] * \varphi(y)] \\
& =\varphi[(\varphi(y) * \varphi(y)) *(\varphi(y) * \varphi(x))] \\
& =\varphi(0) \\
& =1
\end{aligned}
$$

Conclusion

Whether such functions exists or not depends on the special properties of the d-algebras. $B C K$-algebras have the partial order structure, but d-algebras have no such a structure and so we need to seek another conditions for obtaining the analog
of structures in d-algebras. This kind of functional approach can be connected with mirror d-algebras discussed in [3] in a new direction.

References

1. S.S. Ahn \& Y.H. Kim: Some constructions of implicative/commutative d-algebras. Bull. Korean Math. Soc. 46 (2009), 147-153.
2. P.J. Allen, H.S. Kim \& J. Neggers: On companion d-algebras. Math. Slovaca 57 (2007), 93-106.
3. P.J. Allen, H.S. Kim \& J. Neggers: L-up and mirror algebras. Sci. Math. Japonica. 59 (2004), 605-612.
4. A. Dvurečenskij \& S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Pub., Dordrecht, 2009.
5. J.S. Han, H.S. Kim \& J. Neggers J.: Strong and ordinary d-algebras. Multi.-Valued Logic \& Soft Computing 16 (2010), 331-339.
6. Y. Huang: BCI-algebras. Science Press, Beijing, 2003.
7. A. Iorgulescu: Algebras of Logic as BCK-algebras. Editura ASE, Bucharest, 2008.
8. K. Iséki: On BCI-algebras. Math. Seminar Notes 8 (1980), 125-130.
9. K. Iséki \& S. Tanaka: An introduction to theory of BCK-algebras. Math. Japonica 23 (1978), 1-26.
10. H.S. Kim, J. Neggers \& K.S. So: Some aspects of d-units in $d / B C K$-algebras. Jour. of Applied Math. 2012 (2012), Article ID 141684.
11. J. Meng: Implicative commutative semigroups are equivalent to a class of $B C K$ algebras. Semigroup Forum 50 (1995), 89-96.
12. J. Meng \& Y. B. Jun: BCK-algebras. Kyungmoon Sa, Korea, 1994.
13. D. Mundici: $M V$-algebras are categorically equivalent to bounded commutative $B C K$ algebras. Math. Japonica 31 (1986), 889-894.
14. J. Neggers \& H.S. Kim. On d-algebras. Math. Slovaca 49 (1999), 19-26.
15. J. Neggers, A. Dvurećenskij \& H.S. Kim: On d-fuzzy functions in d-algebras. Foundation of Physics $\mathbf{3 0}$ (2000), 1805-1815.
16. J. Neggers, Y.B. Jun \& H.S. Kim: On d-ideals in d-algebras. Math. Slovaca 49 (1999), 243-251.
17. H. Yisheng: BCI-algebras. Science Press, Beijing, 2006.

Department of Mathematics, Hallym University, Chuncheon 200-702, Korea
Email address: ksso@hallym.ac.kr

[^0]: Received by the editors April 17, 2015. Accepted May 08, 2015.
 2010 Mathematics Subject Classification. 06F35.
 Key words and phrases. d-algebra, order reversing, self-inverse, (anti-)homomorphism.

