J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. http://dx.doi.org/10.7468/jksmeb.2015.22.2.179 Volume 22, Number 2 (May 2015), Pages 179–184

A FUNCTIONAL APPROACH TO d-ALGEBRAS

KEUM SOOK SO

ABSTRACT. In this paper we discuss a functional approach to obtain a lattice-like structure in d-algebras, and obtain an exact analog of De Morgan law and some other properties.

1. INTRODUCTION

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([8, 9]). BCK-algebras have some connections with other areas: D. Mundici [13] proved that MV-algebras are categorically equivalent to bounded commutative BCK-algebras, and J. Meng [11] proved that implicative commutative semigroups are equivalent to a class of BCK-algebras. It is well known that bounded commutative BCK-algebras, D-posets and MV-algebras are logically equivalent each other (see [4, p. 420]). We refer useful textbooks for BCK/BCI-algebra to [4, 6, 7, 12, 17]. J. Neggers and H. S. Kim ([14]) introduced the notion of d-algebras which is a useful generalization of BCK-algebras, and then investigated several relations between d-algebras and BCK-algebras as well as several other relations between d-algebras and oriented digraphs. J. S. Han et al. (5) defined a variety of special d-algebras, such as strong d-algebras, (weakly) selective d-algebras and others. The main assertion is that the squared algebra $(X; \Box, 0)$ of a d-algebra is a d-algebra if and only if the root (X; *, 0) of the squared algebra $(X; \Box, 0)$ is a strong d-algebra. Recently, the present author with H. S. Kim and J. Neggers ([10]) explored properties of the set of d-units of a d-algebra. It was noted that many d-algebras are weakly associative, and the existence of non-weakly associative d/BCK-algebras was demonstrated. Moreover, they discussed the notions of a dintegral domain and a left-injectivity in d/BCK-algebras. We refer to [1, 2, 15, 16]for more information on *d*-algebras.

C 2015 Korean Soc. Math. Educ.

Received by the editors April 17, 2015. Accepted May 08, 2015.

²⁰¹⁰ Mathematics Subject Classification. 06F35.

Key words and phrases. d-algebra, order reversing, self-inverse, (anti-)homomorphism.

Keum Sook So

In this paper we discuss a functional approach to obtain a lattice-like structure in *d*-algebras, and obtain an exact analog of De Morgan law and some other properties.

2. Preliminaries

An (ordinary) d-algebra ([14]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

- (D1) x * x = 0,
- (D2) 0 * x = 0,
- (D3) x * y = 0 and y * x = 0 imply x = y for all $x, y \in X$.

A BCK-algebra is a d-algebra X satisfying the following additional axioms:

- (D4) (x * y) * (x * z)) * (z * y) = 0,
- (D5) (x * (x * y)) * y = 0 for all $x, y, z \in X$.

Example 2.1 ([14]). Consider the real numbers \mathbf{R} , and suppose that $(\mathbf{R}; *, \mathbf{e})$ has the multiplication

$$x * y = (x - y)(x - e) + e$$

Then x * x = e; e * x = e; x * y = y * x = e yields (x - y)(x - e) = 0, (y - x)(y - e) = eand x = y or x = e = y, i.e., x = y, i.e., $(\mathbf{R}; *, e)$ is a *d*-algebra.

3. A Functional Approach to *d*-algebras

Let (X, *, 0) be a *d*-algebra. A map $\varphi : X \to X$ is said to be *order reversing* if x * y = 0 then $\varphi(y) * \varphi(x) = 0$ for all $x, y \in X$; self-inverse if $\varphi(\varphi(x)) = x$ for all $x \in X$; an *anti-homomorphism* if $\varphi(x * y) = \varphi(y) * \varphi(x) = 0$ for all $x, y \in X$; a *homomorphims* if $\varphi(x * y) = \varphi(x) * \varphi(y)$ for all $x, y \in X$.

Example 3.1. Consider $X := \{0, a, 1\}$ with

*	0	a	1
0	0	0	0
a	a	0	0
1	1	a	0

Then (X; *, 0) is a *d*-algebra. If we define a map $\varphi : X \to X$ by $\varphi(0) = 1, \varphi(a) = a$ and $\varphi(1) = 0$, then it is easy to see that φ is both self-inverse and order reversing, but it is not an anti-homomorphism, since $\varphi(a*1) = \varphi(0) = 1$ and $\varphi(1)*\varphi(a) = 0*a = 0$.

180

Moreover, it is not a homomorphism, since $\varphi(0 * a) = \varphi(0) = 1 \neq a = 1 * a = \varphi(0) * \varphi(a)$.

Proposition 3.2. Let (X, *, 0) be a d-algebra. If $\varphi : X \to X$ is a (anti-) homomorphism, then $\varphi(0) = 0$.

Proof. Since X is a d-algebra, by (D1), we obtain $\varphi(0) = \varphi(x * x) = \varphi(x) * \varphi(x) = 0.$

Proposition 3.3. If (X, *, 0) is a d-algebra, then every anti- homomorphism is order reversing.

Proof. Let $\varphi : X \to X$ be an anti-homomorphism. If we assume that x * y = 0, then $\varphi(y) * \varphi(x) = \varphi(x * y) = \varphi(0) = 0$ by Proposition 3.2. This proves the proposition.

Remark. The converse of Proposition 3.3 need not be true in general. In Example 3.1, the mapping φ is an order reversing, but not an anti-homomorphism.

Let (X, *, 0) be a *d*-algebra and let $\varphi : X \to X$ be a map. We denote by $1 := \varphi(0)$.

Proposition 3.4. Let (X, *, 0) be a d-algebra and let $\varphi : X \to X$ be both order reversing and self-inverse. Then (X, *, 0) is bounded.

Proof. Given $x \in X$, we have

x * 1	=	$x * \varphi(0)$	$[1 = \varphi(0)]$
	=	$\varphi(\varphi(x))\ast\varphi(0)$	$[\varphi: \text{ self-inverse}]$
	=	0	$[\varphi: order reversing]$

Let (X, *, 0) be a *d*-algebra. We define a relation " \leq " on X by $x \leq y$ if and only if x * y = 0 for all $x, y \in X$. Note that the relation \leq need not be a partial order on X. We define a relation " \wedge on X by $x \wedge y := x * (x * y)$) for all $x, y \in X$.

Proposition 3.5. Let (X, *, 0) be a d-algebra. If $\varphi : X \to X$ is self-inverse, then $\varphi(1) = 0$.

Proof. It follows from φ is self-inverse that $0 = \varphi(\varphi(0)) = \varphi(1)$.

Theorem 3.6. Let (X, *, 0) be a d-algebra and let $\varphi : X \to X$ be a self-inverse

map. If we define $x \lor y := \varphi[\varphi(y) \land \varphi(x)]$, then

$$\varphi(x \wedge y) = \varphi(y) \lor \varphi(x)$$

for all $x, y \in X$.

Proof. Given $x, y \in X$, we have

$$\begin{aligned} \varphi(x \wedge y) &= \varphi[\varphi(\varphi(x)) \wedge \varphi(\varphi(y))] & [\varphi: \text{ self-inverse}] \\ &= \varphi[\varphi(a)) \wedge \varphi(b)] & [a = \varphi(x), b = \varphi(y)] \\ &= b \lor a \\ &= \varphi(y) \lor \varphi(x) \end{aligned}$$

Theorem 3.6 shows that the first De Morgan's law implies the analog of the second De Morgan's law and conversely, since $x \lor y \neq y \lor x$ in general. Moreover, it follows that $x \land y = \varphi(\varphi(x \land y)) = \varphi[\varphi(y) \lor \varphi(x)]$ for all $x, y \in X$.

Theorem 3.7. Let (X, *, 0) be a d-algebra with

for all $x \in X$. If $\varphi : X \to X$ is a self-inverse map, then $x \lor x = x$ and $x \land x = x$ for all $x \in X$.

Proof. (i). Given $x \in X$, we have

$$x \lor x = \varphi[\varphi(x) \land \varphi(x)]$$
 [Theorem 3.6]
$$= \varphi[\varphi(x) \ast (\varphi(x) \ast \varphi(x)]$$

$$= \varphi(\varphi(x) \ast 0)$$
 [(D1)]
$$= \varphi(\varphi(x))$$
 [(1)]
$$= x$$
 [φ : self-inverse]

(ii). $x \wedge x = x * (x * x) = x * 0 = x$.

Proposition 3.8. Let (X, *, 0) be a d-algebra with

(2)
$$(x * y) * z = (x * z) * y$$

for all $x, y, z \in X$. Then $x \wedge y \leq x$ and $x \wedge y \leq y$ for all $x, y \in X$.

Proof. (i). Given $x, y \in X$, by applying (2), we obtain

182

$$(x \wedge y) * a = (x * (x * y)) * a$$

= (x * x) * (x * y)
= 0 * (x * y)
= 0

(ii). Given $x, y \in X$, we have $(x \wedge y) * y = (x * (x * y)) * y = (x * y) * (x * y) = 0$. \Box

Theorem 3.9. Let (X, *, 0) be a d-algebra with the condition (2). If $\varphi : X \to X$ is a self-inverse anti-homomorphism, then $x * (x \lor y) = 1$ and $y * (x \lor y) = 1$ for all $x, y \in X$.

Proof. (i). Since $\varphi : X \to X$ is a self-inverse anti-homomorphism, for all $x, y \in X$, we obtain

$$x * (x \lor y) = x * \varphi(\varphi(y) \land \varphi(x))$$

= $x * \varphi[\varphi(y) * (\varphi(y) * \varphi(x))]$
= $\varphi(\varphi(x)) * \varphi[\varphi(y) * (\varphi(y) * \varphi(x))]$
= $\varphi[[\varphi(y) * (\varphi(y) * \varphi(x))] * \varphi(x)]$
= $\varphi[[(\varphi(y) * \varphi(x)) * (\varphi(y) * \varphi(x))]]$
= $\varphi(0)$
= 1

and

$$y * (x \lor y) = \varphi(\varphi(x)) * \varphi[\varphi(y) * (\varphi(y) * \varphi(x))]$$

$$= \varphi[[\varphi(y) * (\varphi(y) * \varphi(x))] * \varphi(y)]$$

$$= \varphi[(\varphi(y) * \varphi(y)) * (\varphi(y) * \varphi(x))]$$

$$= \varphi(0)$$

$$= 1$$

CONCLUSION

Whether such functions exists or not depends on the special properties of the d-algebras. BCK-algebras have the partial order structure, but d-algebras have no such a structure and so we need to seek another conditions for obtaining the analog

Keum Sook So

of structures in d-algebras. This kind of functional approach can be connected with mirror d-algebras discussed in [3] in a new direction.

References

- S.S. Ahn & Y.H. Kim: Some constructions of implicative/commutative d-algebras. Bull. Korean Math. Soc. 46 (2009), 147-153.
- P.J. Allen, H.S. Kim & J. Neggers: On companion d-algebras. Math. Slovaca 57 (2007), 93-106.
- P.J. Allen, H.S. Kim & J. Neggers: L-up and mirror algebras. Sci. Math. Japonica. 59 (2004), 605-612.
- A. Dvurečenskij & S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Pub., Dordrecht, 2009.
- J.S. Han, H.S. Kim & J. Neggers J.: Strong and ordinary d-algebras. Multi.-Valued Logic & Soft Computing 16 (2010), 331-339.
- 6. Y. Huang: BCI-algebras. Science Press, Beijing, 2003.
- 7. A. Iorgulescu: Algebras of Logic as BCK-algebras. Editura ASE, Bucharest, 2008.
- 8. K. Iséki: On BCI-algebras. Math. Seminar Notes 8 (1980), 125-130.
- K. Iséki & S. Tanaka: An introduction to theory of BCK-algebras. Math. Japonica 23 (1978), 1-26.
- H.S. Kim, J. Neggers & K.S. So: Some aspects of *d*-units in *d/BCK*-algebras. *Jour.* of *Applied Math.* **2012** (2012), Article ID 141684.
- 11. J. Meng: Implicative commutative semigroups are equivalent to a class of *BCK*-algebras. *Semigroup Forum* **50** (1995), 89-96.
- 12. J. Meng & Y. B. Jun: BCK-algebras. Kyungmoon Sa, Korea, 1994.
- D. Mundici: MV-algebras are categorically equivalent to bounded commutative BCKalgebras. Math. Japonica **31** (1986), 889-894.
- 14. J. Neggers & H.S. Kim. On *d*-algebras. Math. Slovaca 49 (1999), 19-26.
- J. Neggers, A. Dvurećenskij & H.S. Kim: On *d*-fuzzy functions in *d*-algebras. *Founda*tion of Physics **30** (2000), 1805-1815.
- J. Neggers, Y.B. Jun & H.S. Kim: On *d*-ideals in *d*-algebras. *Math. Slovaca* 49 (1999), 243-251.
- 17. H. Yisheng: BCI-algebras. Science Press, Beijing, 2006.

DEPARTMENT OF MATHEMATICS, HALLYM UNIVERSITY, CHUNCHEON 200-702, KOREA *Email address*: ksso@hallym.ac.kr