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CLASSIFICATION OF SMOOTH SCHUBERT VARIETIES

IN THE SYMPLECTIC GRASSMANNIANS

Jaehyun Hong

Abstract. A Schubert variety in a rational homogeneous variety G/P is
defined by the closure of an orbit of a Borel subgroup B of G. In general,
Schubert varieties are singular, and it is an old problem to determine
which Schubert varieties are smooth. In this paper, we classify all smooth
Schubert varieties in the symplectic Grassmannians.

1. Introduction

A rational homogeneous manifold S = G/P is a projective manifold, where
a connected complex semisimple group G acts transitively. Under the action
of a Borel subgroup B of G, S has finitely many orbits. The closure of a B-
orbit in S is called a Schubert variety of S. In general, Schubert varieties are
singular, and it is an old problem to determine which Schubert varieties are
smooth. Lakshmibai-Weyman and Brion-Polo have studied the singular loci
of Schubert varieties of S, when S is a compact Hermitian symmetric space
([9] and [2]). In particular, they showed that in this case any smooth Schubert
variety in S is a homogeneous submanifold of S associated to a subdiagram
of the marked Dynkin diagram of S. For example, a Schubert variety of the
Grassmannian Gr(k, V ) of k-subspaces in a vector space V is smooth if and
only if it is a linearly embedded sub-Grassmannian.

More generally, when S is associated to a long simple root, we have:

Theorem 1.1 (Proposition 3.7 of Hong-Mok [4]). Let S = G/P be a rational
homogeneous manifold associated to a long simple root. Then any smooth Schu-
bert variety in S is a homogeneous submanifold of S associated to a subdiagram
of the marked Dynkin diagram of S.

On the other hand, when S is associated to a short simple root, there is a
smooth Schubert variety that is not homogeneous. Let V be a vector space
with a symplectic form ω, i.e., a nondegenerate skew-symmetric bilinear form.
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It follows from the nondegeneracy of the skew-symmetric form that V is even-
dimensional. The variety Grω(k, V ) of isotropic k-subspaces in V is called a
symplectic Grassmannian. It is a rational homogeneous manifold under the
action of the symplectic group Sp(V ) associated to a short simple root. Simi-
larly, for an odd-dimensional vector space W with a skew-symmetric form ψ of
maximal rank, the variety Grψ(k,W ) of isotropic k-subspaces in W is called
an odd symplectic Grassmannian (Mihai [10]). It is smooth, but is no longer
homogeneous. When S is the symplectic Grassmannian Grω(k, V ), take a hy-
perplane W of V such that the rank of ω when restricted to W is maximal.
Then the odd symplectic Grassmannian Grω(k,W ) is a Schubert variety of S,
which is smooth and is not homogeneous.

Another interesting smooth Schubert variety of the symplectic Grassman-
nian Grω(k, V ) is a linear space contained in Grω(k, V ). Here, we consider

Grω(k, V ) as a subvariety of P(
∧k V ). Take an isotropic (k − 1)-subspace F

of V and a subspace F ′ of V . Then the variety Grω(k, V ;F, F ′) of isotropic
k-subspaces of V containing F and contained in F ′ is a Schubert variety of
Grω(k, V ), and is a linear space contained in Grω(k, V ), because any one-
dimensional subspace of V is isotropic. However, Grω(k, V ;F, V ) is not asso-
ciated to a subdiagram of the marked diagram of Grω(k, V ), even though it is
homogeneous under its automorphism group.

In this paper we will classify smooth Schubert varieties in the symplectic
GrassmannianGrω(k, V ) and prove that these are all smooth Schubert varieties
of Grω(k, V ).

Theorem 1.2. Let S = G/P be the symplectic Grassmannian Grω(k, V ).
Then a smooth Schubert variety of S is either a homogeneous submanifold as-
sociated to a subdiagram of the marked diagram of S, an odd symplectic Grass-
mannian, or a linear space.

There are many results on smoothness and singularities of Schubert varieties.
For various smoothness criteria and applications, see Billey-Lakshmibai [1].
It could be possible to get classification of smooth Schubert varieties of the
symplectic Grasssmannian Grω(k, V ) by using their method. But, even in the
case that it is possible to do, we still need some combinatorial work to interpret
it geometrically and to derive results like Theorem 1.1 or Theorem 1.2.

In this paper, we will apply a more geometric method to classify smooth
Schubert varieties: parallel transport of varieties of minimal rational tangents
along minimal rational curves (Section 3.2 of Hong-Mok [3] and Proposition
3.2 of [4]). A new ingredient is the study on the closures of orbits of a Borel
subgroup of L in a horospherical L-variety, which can be considered as a gen-
eralization of Schubert varieties in rational homogeneous manifolds.

In Section 2, we review basic definitions on Schubert varieties and the va-
rieties of minimal rational tangents. In Section 3, we study Schubert varieties
in the symplectic Grassmannian Grω(k, V ) (Proposition 3.1). In Section 4,
we investigate the varieties of minimal rational tangents of smooth Schubert
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varieties (Proposition 4.1), and classify candidates of the varieties of minimal
rational tangents of smooth Schubert varieties in Grω(k, V ) (Proposition 4.2).
From this we obtain the classification of smooth Schubert varieties in Grω(k, V )
(Proposition 4.7).

2. Preliminary

2.1. Schubert varieties

Let G be a connected complex simple group. Take a Borel subgroup B of
G and a maximal torus T in B. Denote by ∆+ the set of positive roots. Then
∆ := ∆+ ∪ −∆+ is the set of all roots. Let S = {α1, . . . , αℓ} be the set of

simple roots. For a root β =
∑ℓ

i=1 niαi, denote by nj(β) the coefficient in αj
of β, so that β =

∑ℓ

i=1 ni(β)αi.
Let t be the Lie algebra of T . To each simple root αk we associate a parabolic

subgroup P of G, whose Lie algebra p is given by p = t +
∑
nk(α)≥0 gα. The

reductive part of p is given by t +
∑

nk(α)=0 gα, and the nilpotent part uP of

p is given by
∑
nk(α)>0 gα. The homogeneous manifold S = G/P is called the

rational homogeneous manifold associated to the simple root αk. We will use
the notation (G,αk) for S, and G will be often given by its type.

Let W be the Weyl group of G with respect to the maximal torus T in B.
For each w ∈ W , define ∆(w) = {β ∈ ∆+ : w(β) ∈ −∆+}. Define a subset
WP of W by

WP := {w ∈ W : ∆(w) ⊂ ∆(uP )},

where ∆(uP ) = {α ∈ ∆+ : nαk
(α) > 0}. Then we have the cell decomposition

S =
∐

w∈WP

B.ew,

where ew = wP , for w ∈ WP , are T -fixed points in S. For each w ∈ WP ,
the B-orbit B.ew is isomorphic to a cell Cℓ(w) of dimension equal to the length
ℓ(w) of w in W . The closure S(w) of B.ew is called the Schubert variety of type
w. We call the point ew the base point of S(w).

2.2. Rationally saturated subvarieties

Let (X,L) be a polarized uniruled projective manifold, where L is an ample
line bundle on X . Fix a minimal rational component K and the variety of
minimal rational tangents C(X) ⊂ P(TX).

For a projective manifold X ⊂ P(V ) that is uniruled by lines contained in
X , the variety K of lines lying on X is a minimal rational component, and the
variety Kx of lines in X passing through x ∈ X is isomorphic to the variety
Cx(X) ⊂ P(TxX) of tangent directions to lines in X passing through x ∈ X .
The union C(X) = ∪x∈XCx(X) is the variety of minimal rational tangents of
X .
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When we speak of the variety of minimal rational tangents of a rational
homogeneous manifold S associated to a simple root, we will assume that S
is equipped with the minimal rational component K, consisting of lines P1

contained in S after we embed S into PN by the ample generator of the Picard
group of S. For more details on the variety of minimal rational tangents and
references, see Section 3.1 of [4].

An irreducible subvariety Z of X is said to be rationally saturated if

(1) P(TzZ) ∩ Cz(X) 6= ∅ for a smooth point z ∈ Z, and
(2) for a general smooth point z ∈ Z and for a general minimal rational

curve C onX passing through z, C must lie on Z whenever C is tangent
to Z at z.

Then the family of minimal rational curves contained in Z can be considered
as a minimal rational component of Z, with respect to which the variety Cz(Z)
of minimal rational tangents of Z at z ∈ Z is equal to P(TzZ) ∩ Cz(X).

Proposition 2.1. Let X ⊂ P(V ) be a projective submanifold uniruled by lines
in P(V ) contained in X, equipped with the minimal rational component of X
consisting of lines lying on X. Let Z be an irreducible linear section of X.
Assume that P(TzZ) ∩ Cz(X) 6= ∅ for a general smooth point z of Z. Then Z
is rationally saturated.

Proof. If Z = X ∩P(W ), then any line C through a smooth point of Z tangent
to Z is tangent to P(W ), and thus is contained in P(W ). Therefore, C is
contained in Z = X ∩ P(W ). �

Proposition 2.2. A Schubert variety S0 of a rational homogeneous manifold
S is rationally saturated.

Proof. Let S0 be a Schubert variety of a rational homogeneous manifold S.
Then S0 is irreducible and is a linear section of S. Furthermore, a Schubert
variety of dimension one, which is a line, is contained in S0 and can be trans-
lated by an element in the Weyl group W to have a non-trivial intersection
with the open B-orbit in S0 (see the proof of Proposition 3.1 of [4]). Hence,
there always exists a line passing through a general smooth point of S0. By
Proposition 2.1, S0 is rationally saturated. �

Remark. When S0 is not smooth, it may happen that a general line through
ew intersects the singular locus of S0.

3. Schubert varieties of the symplectic Grassmannians

Let V be a complex vector space of dimension 2n equipped with a non-
degenerate skew-symmetric bilinear form ω. Take a basis {e1, . . . , e2n} of V ,
such that ω(en−i, en+i+1) = −ω(en+i+1, en−i) = 1 for 1 ≤ i ≤ n, and all other
ω(ei, ej) are zero. Define Fj ⊂ V by the subspace generated by e1, . . . , ej for
1 ≤ j ≤ 2n. Then, F⊥

n−i = Fn+i for 1 ≤ i ≤ n, and we obtain an isotropic
flag F• : 0 ( F1 ( · · · ( F2n = V . The subgroup of G = Sp(V ) consisting
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of elements fixing this flag is a Borel subgroup B of G. Let P be the isotropy
group of G at [Fk]. Then, Grω(k, V ) = G/P , and B is contained in P . As
a rational homogeneous manifold associated to a simple root, Grω(k, V ) has
type (Cn, αk).

A multi-index I = (1 ≤ i1 < i2 < · · · < ik ≤ 2n) is said to be admissible if,
for each 1 ≤ i ≤ n, I contains at most one of i or 2n+1− i. For an admissible
I, define

CI := {E ∈ Gr(k, V ) : dim(E ∩ Fiα) = α, iα ≤ i < iα+1, 1 ≤ α ≤ k},

XI := {E ∈ Gr(k, V ) : dim(E ∩ Fiα) ≥ α, 1 ≤ α ≤ k},

where we put ik+1 = 2n + 1. Then, CI is an orbit of the Borel subgroup B,
and XI is a Schubert variety of Grω(k, V ) (Section 2.5 of [10]). Let EI be the
subspace of V generated by ei1 , . . . , eik . Then, [EI ] is the base point of the
Schubert variety XI .

Proposition 3.1. For 0 ≤ a < k < b ≤ 2n− a, define

Grω(k, V ;Fa, Fb) := {E ∈ Grω(k, V ) : Fa ⊂ E ⊂ Fb}.

Then

(1) Grω(k, V ;Fa, Fb) is a Schubert variety of Grω(k, V ) if b− a ≤ n− a or
(n− a) + (k − a) ≤ b− a ≤ 2n− 2a.

(2) Grω(k, V ;Fa, Fb) is a homogeneous submanifold associated to a subdi-
agram if k < b ≤ n or b = 2n− a, is an odd symplectic Grassmannian
if b = 2n− a− 1, and is a linear space if a = k − 1.

(3) Grω(k, V ;Fa, Fb) is singular if a ≤ k−2 and n+k−a ≤ b ≤ 2n−a−2.

Proof. (1) Note that Grω(k, V ;Fa, Fb) is isomorphic to Grω̃(k−a, Ṽ ; 0, Fb/Fa),

where Ṽ = F⊥
a /Fa is of dimension 2n − 2a and ω̃ is the induced symplectic

form on Ṽ . Thus, we may assume that a = 0.
If b ≤ n or n+ k ≤ b, then Grω(k, V ; 0, Fb) is equal to

{E ∈ Grω(k, V ) : dim(E ∩ Fb−k+1) ≥ 1, . . . , dim(E ∩ Fb) ≥ k}.

Therefore, Grω(k, V ; 0, Fb) is a Schubert variety.
(2) It is easy to check.
(3) Put S1 := Grω(k, V ;Fa, Fb). Assume that a = 0. The proof will be

similar for a 6= 0. For [E] ∈ S1,

T[E](S1) = {ϕ ∈ E∗ ⊗ Fb/E : ω(e, ϕ(e′)) + ω(ϕ(e), e′) = 0, ∀e, e′ ∈ E}.

Now, set

D1
[E](S1) := E∗ ⊗ (Fb ∩ E

⊥)/E,

D2
[E](S1) := {ϕ ∈ E∗ ⊗ (Fb/(Fb ∩E

⊥)) : ω(e, ϕ(e′)) + ω(ϕ(e), e′) = 0,

∀e, e′ ∈ E}.

Then
0 → D1

[E](gS1) → T[E](gS1) → D2
[E](gS1) → 0.
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For E0 = 〈eb−k+1, . . . , eb〉, Fb∩E⊥
0 has dimension b−k, and Fb/(Fb∩E⊥

0 ) ≃ E∗
0

via ω. Thus, dimT[E](S1) = k(b− 2k) + 1
2k(k+ 1) = k(b− k)− 1

2k(k− 1). We
will show that for E = Fk = 〈e1, . . . , ek〉, dimT[E](S1) > dimT[E0](S1), which
implies that S1 is singular.

If k ≤ 2n − b, then E⊥ k Fb. Therefore, T[E](S1) = E∗ ⊗ (Fb/E) has di-

mension k(b − k) > dimS1. If k > 2n − b, then E⊥ ( Fb. Thus, D1
[E](S1) =

E∗ ⊗ (E⊥/E) has dimension k(2n − 2k), and D2
[E](S1) ≃ S2(Fb/E

⊥) has di-

mension 1
2 (b − 2n+ k)(b − 2n+ k + 1). Therefore,

dimT[E](S1) = k(2n− 2k) +
1

2
(b− 2n+ k)(b − 2n+ k + 1)

= k(b − k)− k(b− 2n+ k) +
1

2
(b − 2n+ k)(b − 2n+ k + 1)

= k(b − k) +
1

2
(b− 2n+ k)(b− 2n− k + 1)

= k(b − k)−
1

2
k(k − 1) +

1

2
(2n− b)(2n− b− 1)

> dimS1 if b < 2n− 1. �

Remark. If n − a < b − a < (n − a) + (k − a), then Grω(k, V ;Fa, Fb) is not
irreducible, and thus is not a schubert variety. For example, Grω(3,C

10;F0, F7)
is the union X{3,6,7} ∪X{3,5,7} of two Schubert varieties.

4. Classification

4.1. Varieties of minimal rational tangents of smooth Schubert vari-

eties

Let S = G/P be a rational homogeneous manifold associated to a simple
root. Then, the Fano variety F1(S) of lines on S has at most two G-orbits,
or equivalently, the variety Cx(S) of minimal rational tangents of S at x has
at most two orbits under the action of the isotropy group Px of G at x (see
the proof of Proposition 4.1(3)). We call a line corresponding to a point in the
open G-orbit in F1(S) a general line. Let Cx(S)gen denote the subvariety of
Cx(S) consisting of the tangent directions of general lines in S.

Let S1 be a Schubert variety of S. Then the stabilizer StabG(S1) of S1 in G
is a parabolic subgroup of G. We define a general point in S1 as a point x in the
open orbit of StabG(S1) in S1. In particular, the base point of S1 is a general
point. We define a general point of Cx(S1) as a point in Cx(S1) ∩ Cx(S)gen.

The following necessary conditions for the smoothness of a Schubert variety
will be used to classify smooth Schubert varieties in the symplectic Grassman-
nian.

Proposition 4.1. Let S = G/P be a rational homogeneous manifold associated
to a simple root, and let S1 be a smooth Schubert variety. In addition, let x be
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a general point of S1, and Lx be the reductive part of the isotropy group of G
at x. Then:

(0) S1 is uniruled by lines of S lying on S1 and is of Picard number one.
(1) The variety Cx(S1) of minimal rational tangents of S1 at x is a smooth

linear section Cx(S) ∩ P(TxS1).
(2) The variety Cx(S) of minimal rational tangents of S at x has an open

dense orbit under the action of Lx, and has finitely many orbits under
the action of a Borel subgroup of Lx.

(3) Cx(S1) is the closure of an orbit of a Borel subgroup of Lx in Cx(S).

The properties (0), (1), and (3) from Proposition 4.1 for the variety Cx(S1) of
minimal rational tangents of a smooth Schubert variety S1 are used to classify
smooth Schubert varieties in a rational homogeneous manifold associated to a
long simple root (see the proof of Proposition 3.7 of [4]). We will prove that
Cx(S1) has the same properties when S is associated to a short simple root.

Proof. Let S = G/P be a rational homogeneous manifold associated to a simple
root, and let S1 be a smooth Schubert variety. Let x be a general point of S1,
and Lx be the reductive part of the isotropy group of G at x.

(0) follows from Proposition 3.1 of [4].
(1) follows from Proposition 3.1 of [4].
(2) If S is associated to a long simple root, then Cx(S) is again a rational

homogeneous manifold under the action of Lx (see the description of Cx(S)
on p. 342 of [4]). If S is associated to a short simple root, then Cx(S) is
not a rational homogeneous manifold under the action of Lx. We recall the
description of the variety of minimal rational tangents of S when S is associated
to a short simple root (Hwang-Mok [7], [8]):

(a) If S is of type (Cn, αk), then Lx is SL(E∗)× Sp(Q), and Cx(S) is the
projectivization of the cone

{u⊗ q + cu2 : u ∈ E∗, q ∈ Q, c ∈ C}\{0}

in (E∗ ⊗Q)⊕ S2E∗, where E∗ is a vector space of dimension k and Q
is a vector space of dimension 2m = 2(n− k) with a symplectic form.

(b) If S is of type (F4, α3), then Lx is SL(W )× SL(E), and Cx(S) is the
projectivization of the cone

{v∗ ⊗ e+ w ⊗ e2 : 〈v∗, w〉 = 0, v∗ ∈ W ∗, v ∈W, e ∈ E}\{0}

in (W ∗ ⊗ E) ⊕ (W ⊗ S2E), where W is a complex vector space of
dimension 3 and E is a complex vector space of dimension 2.

(c) If S is of type (F4, α4), then Lx is B3(= Spin(7)), and Cx(S) is the
projectivization of the closure of the B3-orbit of v3 + v1 in VB3

(ω3) ⊕
VB3

(ω1), where v3 is a highest weight vector of the spinor representation
VB3

(ω3) of B3 (of dimension 8 ), and v1 is a highest weight vector of
the standard representation VB3

(ω1) of B3 (of dimension 7 ).
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Moreover, Cx(S) has an open dense orbit Ω under the action of Lx, which is
defined as follows:

(a) If S is of type (Cn, αk), then Ω is the projectivization of the cone

{u⊗ q + cu2 : u 6= 0 ∈ E∗, q 6= 0 ∈ Q, c 6= 0 ∈ C}

in (E∗ ⊗Q)⊕ S2E∗.
(b) If S is of type (F4, α3), then Ω is the projectivization of the cone

{v∗ ⊗ e+ w ⊗ e2 : 〈v∗, w〉 = 0, v∗ 6= 0 ∈W ∗, w 6= 0 ∈ W, e 6= 0 ∈ E}

in (W ∗ ⊗ E)⊕ (W ⊗ S2E).
(c) If S is of type (F4, α4), then Ω is the complement in Cx(S) of the

union of the B3-orbit of [v3] in P(VB3
(ω3)) and the B3-orbit of [v1] in

P(VB3
(ω1)).

We will prove this again for later use in the case when S is of type (Cn, αk),
i.e., when S is the symplectic Grassmannian. The proof will be similar for
other cases.

Consider the projection map

π : Ω −→ P((E∗ ⊗Q)⊗ S2E∗)

defined by [u⊗ q + cu2] ∈ Ω
π

7−→ [(u⊗ q)⊗ (cu2)] = [(u⊗ q)⊗ (u2)] ∈ P((E∗ ⊗
Q)⊗ S2E∗), where u 6= 0 ∈ E∗, q 6= 0 ∈ Q, c 6= 0 ∈ C. Then, the image π(Ω)
is P(E∗)×P(Q), which is a rational homogeneous manifold under the action of
Lx embedded into P((E∗ ⊗Q) ⊗ S2E∗) (the Segre embedding of the product
of (P(E∗) ⊂ P(S3E∗)) and P(Q)). Furthermore, the isotropy group H1 at a
point [u ⊗ q + cu2] is contained in the isotropy group H2 at [(u ⊗ q) ⊗ (u2)],
and the quotient H2/H1 ≃ C× := C\{0} acts transitively on the fiber over
[(u⊗ q)⊗ (u2)]. Therefore, Ω is homogeneous under the action of Lx.

Let w be the element in WP corresponding to S1 (See Section 2.1). Let L
be the reductive part of P . We may take ew as a general point x in S1, and it
follows that the isotropy group Lx at x is w(L). Therefore, w(B ∩L) is a Borel
subgroup of Lx. Since π(Ω) = P(E∗)×P(Q) has finitely many orbits under the
action of w(L ∩B), so does Ω.

(3) follows from (1) and (2) (see the proof of Proposition 3.7 of [4]). We will
repeat the arguments for convenience.

Let w be the element in WP corresponding to S1, as in the proof of (2).
Since w ∈ WP , we have that ∆(ω) ⊂ ∆(uP ) and so w(B ∩ L) is contained in
B ∩w(L). Therefore, w(B ∩ L) is a Borel subgroup of Lx, and is contained in
B ∩ Lx.

Since B acts on S1 invariantly, B∩Lx acts on Cx(S1) invariantly. Hence, the
Borel subgroup w(B ∩ L) of Lx acts on Cx(S1) invariantly. By (2), Cx(S) has
only finitely many orbits under the action of w(B ∩L), and it follows from (1)
that Cx(S1) is smooth and thus is irreducible. Hence, Cx(S1) has a unique open
orbit under the action of the Borel subgroup w(B ∩ L) of Lx. Consequently,
Cx(S1) is the closure of the Borel subgroup w(B ∩ L) of Lx. �
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Remark. If S is a rational homogeneous manifold associated to a long simple
root, and S1 is a smooth Schubert variety of S, then Cx(S) is a product of
rational homogeneous manifolds associated to long simple roots, and Cx(S1)
is a smooth Schubert variety of Cx(S). Therefore, we may use induction to
classify smooth Schubert varieties in S (see the proof of Proposition 3.7 in [4]).

If S is associated to a short simple root, then Cx(S) is no longer a rational
homogeneous manifold under the action of Lx. However, it has an open orbit
isomorphic to a C×-bundle over a rational homogeneous manifold, which still
has finitely many orbits under the action of a Borel subgroup of Lx (Proposition
4.1(2)).

In general, for a reductive group L, a normal L-variety that has only finitely
many orbits under the action of a Borel subgroup of L is said to be spherical.
As in the case of rational homogeneous manifolds, a spherical L-variety also has
a cell-decomposition by the orbits of a Borel subgroup of L. It is not easy to
determine the smoothness of their closures in general. We will compute these
closures in Cx(S) when S is the symplectic Grassmannian.

4.2. Characterization of smooth Schubert varieties

Recall that {F•} = {F0 = 0 ⊂ F1 ⊂ · · · ⊂ F2n = V } is an isotropic flag of
(V, ω), and B is the Borel subgroup of G = Sp(V ) fixing the flag {F•}. Let
P be the isotropy group of G at the base point [E] := [Fk], and let L be the
reductive part of the isotropy group P . Then the flag {F•} of V induces a flag
of E∗ and of E⊥/E:

{0 ⊂ (E/(Fk−1 ∩ E))∗ ⊂ · · · ⊂ (E/(F1 ∩ E))∗ ⊂ E∗},

{0 ⊂ (Fk+1 ∩ E
⊥)/E ⊂ · · · ⊂ (F2n−k−1 ∩ E

⊥)/E ⊂ E⊥/E}.

Let X1,a be the Schubert variety P((E/(Fa ∩E))∗) of P(E∗), where 0 ≤ a ≤
k− 1, and let X2,b be the Schubert variety P((Fb ∩E⊥)/E) of P(E⊥/E), where
k+1 ≤ b ≤ 2n−k. Then X1,a×X2,b are Schubert varieties of P(E

∗)×P(E⊥/E).
Let X o

1,a (X o
2,b, respectively) denote the open cell of X1,a (X2,b, respectively).

Then, π−1(X o
1,a × X o

2,b) is an (L ∩ B)-orbit in the open L-orbit Ω ⊂ C[E](S),

where π : Ω → P(E∗)× P(E⊥/E) is the projection map in Proposition 4.1(2).
Let Za,b be the closure of π−1(X o

1,a × X o
2,b) in C[E](S). Then, by Proposition

4.1(2), we get the following.

Proposition 4.2. Let S be the symplectic Grassmannian Grω(k, V ). Let P be
the isotropy group of G = Sp(V ) at the base point [E], and let L be the reductive
part of l P . Then the closures of L ∩B-orbits in C[E](S) are the following:

X1,a ×X2,b,Za,b,X1,a,

where 0 ≤ a ≤ k − 1, k + 1 ≤ b ≤ 2n− k.

Here, we consider X1,a×X2,b as a subvariety of P(E∗⊗(E⊥/E))∩C[E](S) =

P(E∗) × P(E⊥/E) and X1,a as a subvariety of P(S2(E∗)) ∩ C[E](S) = P(E∗).

Then, Za,b intersects P(E∗⊗(E⊥/E)) in X1,a×X2,b, and intersects P(S2(E∗)) in
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X1,a. We define a general point of Za,b as a point in the complement Za,b\X1,a×
X2,b of X1,a ×X2,b.

Proposition 4.3. Let S be the symplectic Grassmannian Grω(k, V ), and let
[E] be the base point of S. For 0 ≤ a < k and (k − a < b − a ≤ n − a, or
(n−a)+ (k−a) ≤ b−a ≤ 2n− 2a), set Sa,b := Grω(k, V ;Fa, Fb) and let [Ea,b]
be the base point of Sa,b. Then

C[Ea,b](S) ∩ P(T[Ea,b]Sa,b) =

{
X1,a ×X2,b if k − a < b− a ≤ n− a,
Za,b if (n− a)+(k − a) ≤ b− a ≤ 2n− 2a,

after we identify T[Ea,b]S with T[E]S via w ∈ WP , with w([E]) = [Ea,b].

Note that, by Proposition 3.1, Sa,b = Grω(k, V ;Fa, Fb) is a Schubert variety
for a, b as given in Proposition 4.3.

Proposition 4.4. Let S be the symplectic Grassmannian Grω(k, V ). Let [E]
be the base point of S and let P be the isotropy group at [E]. Assume that
0 ≤ a < k and (n− a) + (k− a) ≤ b− a ≤ 2n− 2a. Then, at a general point α
of Za,b and for any h ∈ P sufficiently close to the identity element e ∈ P and
satisfying Tα(hZa,b) = Tα(Za,b), we have hZa,b = Za,b.

Proof. The proof is similar to the proof of Proposition 4.3 in [4]. We may
assume that a = 0. Let n+ k ≤ b ≤ 2n. Then, Fb/(Fb ∩ E⊥) is isomorphic to
E∗, via the symplectic form ω. For a general α = e∗ ⊗ v in Za,b = P{e∗ ⊗ v ∈
E∗ ⊗ Fb/E : ω(v, · ) = λe∗}, the tangent space Tα(Za,b) is given by

e∗ ⊗ (Fb ∩E
⊥)/E + {f∗ ⊗ v + e∗ ⊗ vf : f ∈ E},

where for f ∈ E, vf is an element in Fb such that ω(vf , · ) = f∗ on E, and
thus determines Fb. �

Proposition 4.5. Let S be the symplectic Grassmannian Grω(k, V ) and let
Sa,b be the Schubert variety of the form Grω(k, V ;Fa, Fb), where 0 ≤ a ≤ k− 2
and (n− a) + (k − a) ≤ b− a ≤ 2n− 2a. Let x be the base point [Ea,b] of Sa,b.
Then the following properties hold:

(1) Let Z be a smooth Schubert variety (with respect to a Borel subgroup B̃
of G which may not be equal to B). If Z contains x as a general point
with Cx(Z) = Cx(Sa,b), then Z is equal to Sa,b.

(2) There does not exist such a Z as in (1) if 0 ≤ a ≤ k− 2 and (n− a) +
(k − a) ≤ b− a ≤ 2n− 2a− 2.

Before giving the proof, let us roughly outline how it works. We will use
similar arguments as those in the proofs of Proposition 3.2 and Proposition
3.7 in [4]. There, we assumed the following two properties for the variety
Z = Cx(S0) of minimal rational tangent of the ‘model’ Schubert variety S0:

(I) At a general point α ∈ Z, for any h ∈ Px sufficiently close to the
identity element e ∈ Px and satisfying Tα (hZ) = Tα (Z), we must
have hZ = Z.
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(II) Any local deformation of Z in Cx(S) is induced by the action of Px.

The same argument works for S0 = Sa,b when 0 ≤ a ≤ k− 2 and 2n− 2a− 1 ≤
b−a ≤ 2n−2a. However, it does not work for S0 = Sa,b when 0 ≤ a ≤ k−2 and
(n−a)+(k−a) ≤ b−a ≤ 2n−2a−2. There are two differences. One is that the
property (II) no longer holds. The other is that our ‘model’ Schubert variety
Sa,b is not smooth (Proposition 3.1(3)). We will overcome these difficulties by
assuming that Z is not just a smooth subvariety of S uniruled by lines, but
also is a Schubert variety. Then we will use the property that Sa,b has a line
not intersecting the singular locus of Sa,b.

Lemma 4.6. Let Sa,b be the Schubert variety Grω(k, V ;Fa, Fb), where 0 ≤
a ≤ k − 2 and (n − a) + (k − a) ≤ b − a ≤ 2n− 2a. Then we have a sequence
of locally closed submanifolds V0 = {x} ( V1 ( · · · ( Vm of Sa,b such that
dimVm = dimSa,b, and any point in Vk can be connected to a point in Vk−1

by a line.

Proof. This follows from the fact that Sa,b is a smooth uniruled projective
variety of Picard number one when 0 ≤ a ≤ k−2 and 2n−2a−1 ≤ b−a ≤ 2n−2a
(see Section 4.3 of [6]). The same arguments as in Section 4.3 of [6] work if
there is a line in Sa,b contained in the smooth locus of Sa,b.

We may assume that a = 0. Let S′
a,b := {E ∈ Sa,b : F2n−b ∩ E = 0}.

Then, S′
a,b is contained in the smooth locus of Sa,b, and the line {E ∈ Sa,b :

〈en−k+1, . . . , en−1〉 ⊂ E ⊂ 〈en−k+1, . . . , en−1, en, en+1〉} is contained in S′
a,b.
�

Proof of Proposition 4.5. (1) Let Z be a smooth Schubert variety of S (with

respect to a Borel subgroup B̃ of G which may not be equal to B). Then, Z
is uniruled by lines, and of Picard number one (Proposition 4.1(0)). Assume
that Z contains x as a general point, with Cx(Z) = Cx(Sa,b). Then the locus
of lines in Sa,b passing through x is contained in Z.

Take a general line C through x contained in Sa,b. Let C
′ be the intersection

of C with the orbit Sgena,b of x under the action of the stabilizer StabG(Sa,b) of

Sa,b in G. Since x is a general point of Sa,b, C
′ is a Zariski open subset of C.

Similarly, let C′′ be the intersection of C with the orbit Zgen of x under the
action of the stabilizer StabG(Z) of Z in G. Then C′′ is also a Zariski open
subset of C.

Let y ∈ C′ ∩ C′′. Then, since y is a general point of Sa,b, Cx(Sa,b) ⊂
P(Tx(Sa,b)) is projectively equivalent to Cy(Sa,b) ⊂ P(Ty(Sa,b)). Similarly, since
y is a general point of Z, Cx(Z) ⊂ P(TxZ) is projectively equivalent to Cy(Z) ⊂
P(TyZ). Hence, Cy(Sa,b) ⊂ P(Ty(Sa,b)) is projectively equivalent to Cy(Z) ⊂
P(TyZ). By Proposition 3.4 of [5], there exists h ∈ Py such that hCy(Sa,b) =
Cy(Z). (In [5] we consider the case when b = 2n − a. The same arguments
work in other cases, too.) By Lemma 2.8 of [3] we have that Tα(hCy(Sa,b)) =
Tα(Cy(Z)), and by Proposition 4.4 we have that Cy(Sa,b) = Cy(Z). Therefore,
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the locus of lines in Sa,b passing through y is contained in Z. Repeating the
same arguments and using Lemma 4.6, we get that Sa,b is contained in Z.

If dimSa,b < dimZ, then by the same arguments as in the proof of Propo-
sition 3.7 of [4] we have an integrable distribution W of Z with compact leaves
gSa,b, where g lies in some subvariety G′ of G, such that for a general point
g ∈ G′ and for a general point z ∈ gSa,b, any line in Z passing through z lies
in gSa,b. By arguments from the same proof again, the existence of such a W
contradicts the fact that Z is a uniruled projective manifold of Picard number
one. Therefore, we have dimSa,b = dimZ, from which it follows that Z is equal
to Sa,b.

(2) follows from (1) and Proposition 3.1(3). �

Now, we will show that there is no smooth Schubert variety of the form
Grω(k, V ;Fa, Fb) other than those given in Proposition 3.1.

Proposition 4.7. Smooth Schubert varieties of the symplectic Grassmannian
Grω(k, V ) are of the form Grω(k, V ;Fa, Fb), where one of the following holds:

(1) 0 ≤ a < k and (k < b ≤ n or b = 2n− a),
(2) 0 ≤ a < k and b = 2n− a− 1,
(3) a = k − 1 and n+ 1 ≤ b ≤ 2n− 1.

Recall that a line in S = Grω(k, V ) is general if it corresponds to a point
in the open orbit of G in F1(S), that a point in C[E](S) ∩ P(E∗ ⊗ (E⊥/E)
corresponds to a non-generic line passing through [E], and that a point in its
complement corresponds to a generic line passing through [E]. We describe
how they differ by comparing them with lines in the Grassmannian Gr(k, V ).

Let (Ek−1, Ek+1) be a pair of a (k − 1)-subspace Ek−1 of V and a (k + 1)-
subspace Ek+1 of V , such that Ek−1 ⊂ Ek+1. Then,

LEk−1,Ek+1
:= {[E] : Ek−1 ⊂ E ⊂ Ek+1}

is a line in P(∧kV ) contained in Gr(k, V ), and any line in Gr(k, V ) is obtained
in this way.

The line LEk−1,Ek+1
is contained in the symplectic Grassmannian Grω(k, V )

if Ek−1 is isotropic and Ek+1 is a subspace of E⊥
k−1. Moreover, if Ek+1 is

isotropic (not isotropic, respectively), then LEk−1,Ek+1
is non-generic (generic,

respectively).

Proof of Proposition 4.7. Let S1 be a smooth Schubert variety of S. In addi-
tion, let w be the corresponding element w ∈ WP and let [E] be the base point
of S1. By Proposition 4.1(1), C[E](S1) is the linear section C[E](S) ∩ P(T[E]S1)
of C[E](S). By Proposition 4.1(3) and its proof, C[E](S1) is the closure of the
Borel subgroup w(L ∩B) of L[E].

Assume that S1 does not contain a generic line. Then, C[E](S1) is contained

in P(E∗ ⊗ (E⊥/E)) ∩ C[E](S). By Proposition 4.2, C[E](S1) is X1,a × X2,b for
some a, b.



CLASSIFICATION OF SMOOTH SCHUBERT VARIETIES 1121

Consider S1 as a subvariety of the Grassmannian Gr(k, V ). Then, by Propo-
sition 3.5 of [4] and the fact that S1 has Picard number one, S1 is a sub-
grassmannian Gr(k, V ;Fa, Fb). However, Gr(k, V ;Fa, Fb) is not contained in
Grω(k, V ) unless Fb is an isotropic subspace of V , i.e., b ≤ n. Therefore, S1 is of
the form Gr(k, V ;Fa, Fb) for some b ≤ n and C[E](S1) is of the form X1,a×X2,b

for some b ≤ n.
Assume that S1 contains a generic line. Then, S1 contains a non-generic

line too, because S1 is compact. By Proposition 4.2, C[E](S1) is Za,b for some a
and b. Therefore, Za,b = C[E](S)∩P(T[E]S1), and the linear span 〈Za,b〉 of Za,b
is contained in P(T[E]S1). In fact, 〈Za,b〉 is equal to P(T[E]S1), because C[E](S)
is nondegenerate in P(T[E]S). The linear span 〈Za,b〉 of Za,b is P(((E/Fa ∩

E)∗ ⊗ ((Fb ∩E⊥)/E))⊕ (S2(E/Fa ∩E)∗)) when we identify T[E]S with (E∗ ⊗

(E⊥/E)) ⊕ (S2E∗). Thus, P(T[E]S1) = P(((E/Fa ∩ E)∗ ⊗ ((Fb ∩ E⊥)/E)) ⊕
(S2(E/Fa ∩ E)∗)).

Assume that a = 0 (the proof for the case when a ≥ 1 will be similar).
Consequently, we have P(T[E]S1) = P((E∗ ⊗ ((Fb ∩ E⊥)/E)) ⊕ (S2E∗)). We
claim that if k 6= 1, it follows that b ≥ n+ k. One can prove this by exploiting
the Schubert cells in Grω(k, V ), or by using the fact that Grω(k, V ; 0, Fb) is
not a Schubert variety unless b ≥ n + k. We leave the proof to the reader.
Therefore, by Proposition 4.5(2), we have that b = 2n− 1 or 2n. �

Now, Theorem 1.2 follows from Proposition 3.1 and Proposition 4.7.
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