REMARKS ON NONSPECIAL LINE BUNDLES ON GENERAL k-GONAL CURVES

Youngook Choi and Seonja Kim

Abstract

In this work we obtain conditions for nonspecial line bundles on general k-gonal curves failing to be normally generated. Let \mathcal{L} be a nonspecial very ample line bundle on a general k-gonal curve X with $k \geq 4$ and $\operatorname{deg} \mathcal{L} \geq \frac{3}{2} g+\frac{g-2}{k}+1$. If \mathcal{L} fails to be normally generated, then \mathcal{L} is isomorphic to $\mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R$ for some $n \geq 1, B$ and R satisfying (1) $h^{0}(R)=h^{0}(B)=1$, (2) $n+3 \leq \operatorname{deg} R \leq 2 n+2$, (3) $\operatorname{deg}(R \cap F) \leq 1$ for any $F \in g_{k}^{1}$. Its converse also holds under some additional restrictions. As a corollary, a very ample line bundle $\mathcal{L} \simeq \mathcal{K}_{X}-g_{d}^{0}+\xi_{e}^{0}$ is normally generated if $g_{d}^{0} \in X^{(d)}$ and $\xi_{e}^{0} \in X^{(e)}$ satisfy $d \leq \frac{g}{2}-\frac{g-2}{k}-3, \operatorname{supp}\left(g_{d}^{0} \cap \xi_{e}^{0}\right)=\emptyset$ and $\operatorname{deg}\left(g_{d}^{0} \cap F\right) \leq k-2$ for any $F \in g_{k}^{1}$.

1. Introduction

Let X be a smooth algebraic curve of genus g over an algebraically closed field of characteristic zero. A very ample line bundle \mathcal{L} on X is said to be normally generated if $H^{0}\left(\mathbb{P}^{N}, \mathcal{O}(m)\right) \rightarrow H^{0}\left(X, \mathcal{L}^{m}\right)$ is surjective for all $m \geq 0$, where $\mathbb{P}^{N}:=\mathbb{P} H^{0}(\mathcal{L})^{*}$. Any line bundle on X of degree at least $2 g+1$ is normally generated $[2,7,8]$ and any very ample line bundle on X of degree $2 g$ is normally generated unless X is hyperelliptic ([5]). On the other hand, if X is hyperelliptic, any line bundle of degree $\leq 2 g$ is not normally generated (Corollary 3.4 in [5]). If X is a trigonal curve of genus $g>4$ with $2 g-m_{X} \leq$ $\operatorname{deg} \mathcal{L} \leq 2 g$, then by Corollary 1 in [6] a nonspecial very ample line bundle \mathcal{L} fails to be normally generated under the following specific condition:

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\beta g_{3}^{1}+R \quad \text { for some } R \geq 0
$$

Received November 19, 2014.
2010 Mathematics Subject Classification. 14H30, 14H51, 14C20.
Key words and phrases. general k-gonal curve, normal generation, nonspecial line bundle, Clifford index.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2011-0014465) for first author. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2013R1A1A2058764) and an Academic Research Fund of Chungwoon University in 2014 for second author.
where $\beta=2 g-\operatorname{deg} \mathcal{L}$ and m_{X} is the Maroni invariant of X.
The aim of this work is to characterize nonspecial very ample line bundles on general k-gonal curves which fail to be normally generated. If a nonspecial very ample line bundle \mathcal{L} on a general k-gonal curve X fails to be normally generated, then by Theorem 3 in [3] and Theorem 2.1 in [4] we obtain an equivalence $\mathcal{L} \simeq \mathcal{K}_{X}-\left(r g_{k}^{1}+\tilde{B}\right)+\tilde{R}$ for some $r \geq 1, \tilde{B} \geq 0$ and $\tilde{R} \geq 0$ with $\operatorname{deg} \tilde{R} \leq 2 r+2$. Here, g_{k}^{1} is the unique pencil of degree k on X. In order to figure out sufficient conditions for the failure of normal generation, it is helpful to more specify conditions on those divisors \tilde{R} and \tilde{B} (see the proof of Theorem 3.2). Since one of typical ways to deal with multiple coverings is to exploit properties of their base curves, it is useful to relate \tilde{R} or \tilde{B} to a fiber of the covering morphism. Thus we transform the above equivalence to the following form:

$$
\begin{equation*}
\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R \text { with } \operatorname{deg}(R \cap F) \leq 1 \text { for any } F \in g_{k}^{1} \tag{1.1}
\end{equation*}
$$

Furthermore we may assume that the transformation (1.1) satisfies $\operatorname{deg}(B \cap$ $F) \leq k-2$ for any $F \in g_{k}^{1}$, which guaranties the uniqueness of the presentation (1.1) of \mathcal{L} (Proposition 2.2).

Through this observation we get a result on a general k-gonal curve X of genus g and $4 \leq k \leq \frac{g+1}{2}$ as follows (Theorem 3.2). If a nonspecial very ample line bundle \mathcal{L} on X with $\operatorname{deg} \mathcal{L} \geq \frac{3}{2} g+\frac{g-2}{k}+1$ fails to be normally generated, then \mathcal{L} is isomorphic to $\mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R$ for some $n \geq 1, R \geq 0$ and $B \geq 0$ satisfying the following:
$(*(n)) \quad n+3 \leq \operatorname{deg} R \leq 2 n+2, h^{0}(R)=1, h^{0}(B)=1, \operatorname{supp}(R \cap B)=\emptyset$,
$(* *) \quad \operatorname{deg}(R \cap F) \leq 1$ and $\operatorname{deg}(B \cap F) \leq k-2$ for any $F \in g_{k}^{1}$.
Such a line bundle \mathcal{L} has an equivalence $\mathcal{L} \simeq \mathcal{K}_{X}-\left(g_{n k-n}^{0}+B\right)+\left(R-R_{n}\right)$ for $R_{n} \in X^{(n)}$ and $g_{n k-n}^{0}:=n g_{k}^{1}-R_{n}$, and hence there exists a divisor $\tilde{F} \in g_{k}^{1}$ such that $\operatorname{deg}\left(\tilde{F} \cap g_{n k-n}^{0}\right)=k-1$ since $n \geq 1$ and $\operatorname{deg}(R \cap F) \leq 1$ for any $F \in g_{k}^{1}$. In fact, a line bundle $\mathcal{L} \simeq \mathcal{K}_{X}-g_{d}^{0}+\xi_{e}^{0}$ is very ample and normally generated if $g_{d}^{0} \in X^{(d)}$ and $\xi_{e}^{0} \in X^{(e)}$ satisfy $\operatorname{supp}\left(g_{d}^{0} \cap \xi_{e}^{0}\right)=\emptyset, d \leq \frac{g}{2}-\frac{g-2}{k}-3, \xi_{e}^{0} \nless F$ and $\operatorname{deg}\left(g_{d}^{0} \cap F\right) \leq k-2$ for any $F \in g_{k}^{1}$ (Corollary 3.3). Therefore, in Theorem 3.2 , the condition $n \geq 1$ is crucial for failing to be normally generated.

Conversely, a line bundle $\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R$ which satisfies the conditions $(*(n)),(* *)$ and $2 n(k-2)+\operatorname{deg} B \leq \frac{g-4}{2}$ is very ample and fails to be normally generated (Theorem 3.4). In addition, for both hyperelliptic and trigonal cases, nonspecial non-normally generated very ample line bundles which were already classified in [5] and [6] also admit the same type of presentation as (1.1) with conditions $(*(n))$ and ($* *$) (Remark 3.5, Remark 3.6).

Regarding special line bundles on general k-gonal curves, it was shown that if a special very ample line bundle \mathcal{L} of $\operatorname{deg} \mathcal{L}>\frac{3 g-1}{2}$ on a general k-gonal curve X with $4 \leq k \leq \frac{g+1}{2}$ fails to be normally generated, then we have $\operatorname{deg} B>\frac{c(k-2)}{2}$,
where $c:=\operatorname{deg} \mathcal{L}-\frac{3 g-1}{2}$ and B is the base locus of $\mathcal{K}_{X} \otimes \mathcal{L}^{-1}$ ([1]). Note that the special line bundle \mathcal{L} is isomorphic to $\mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)$ for some $n \geq 0$ and a divisor B with $\operatorname{deg}(B \cap F)<k-2$ for any $F \in g_{k}^{1}$ by the very ampleness of \mathcal{L}.

Notations.

(1) $H^{i}(\mathcal{L}):=H^{i}(X, \mathcal{L}), h^{0}(D):=h^{0}\left(X, \mathcal{O}_{X}(D)\right)$.
(2) g_{d}^{0} : an effective divisor of degree d with $h^{0}\left(X, \mathcal{O}_{X}\left(g_{d}^{0}\right)\right)=1$.
(3) $\mathcal{L}-g_{d}^{n}:=\mathcal{L}(-D)$ where $g_{d}^{n}=|D|$.
(4) $\langle D\rangle_{\mathcal{L}}$: the linear space spanned by the points of $\varphi_{\mathcal{L}}(D)$ for a very ample \mathcal{L}.
Acknowledgement. The authors would like to thank Korea Institute for Advanced Study(KIAS) for warm hospitality when they were a visiting professor and an associate member in KIAS.

2. Preliminaries

The aim of this work is to characterize nonspecial line bundles on a general k-gonal curve X which are very ample and fail to be normally generated. To do this we in advance want to find out conditions such as $(*(n))$ and $(* *)$ for a description $\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R$ on X. This can be done through Proposition 2.2 which will be proved by the following theorem.

Theorem 2.1 ([4], Theorem 2.1). Let X be a general k-gonal curve of genus $g \geq 4, k \geq 4$, and let g_{k}^{1} be the unique pencil of degree k on X. If X has a line bundle \mathcal{L} with $\operatorname{Cliff}(\mathcal{L}) \leq \frac{g-4}{2}$ and $\operatorname{deg} \mathcal{L} \leq g-1$, then $|\mathcal{L}|$ is compounded of g_{k}^{1}, that is, $|\mathcal{L}|=(\operatorname{dim}|\mathcal{L}|) g_{k}^{1}+B$ for some $B \geq 0$.

The following proposition will be used for the proof of Theorem 3.2 which demonstrates necessary conditions for nonspecial line bundles on general k gonal curves not to be normally generated. The condition $\operatorname{deg}(R \cap F) \leq 1$ in $(* *)$ which enables us to use properties of the base curve \mathbb{P}^{1} is essential to show the converse of Theorem 3.2 with some restrictions.

Proposition 2.2. Let X be a general k-gonal curve of genus g. Assume that a very ample line bundle \mathcal{L} on X is given by $\mathcal{L} \simeq \mathcal{K}_{X}-\left(r g_{k}^{1}+\tilde{B}\right)+\tilde{R}$ for some $r \geq 1$, divisors $\tilde{R} \geq 0$ and $\tilde{B} \geq 0$ on X satisfying $r(k-2)+\operatorname{deg} \tilde{B} \leq \frac{g-4}{2}$ and the condition $(*(r))$. Then we have the following:
(1) $\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R$ for some $n \geq 1$, divisors $R \geq 0$ and $B \geq 0$ satisfying $n(k-2)+\operatorname{deg} B \leq \frac{g-4}{2},(*(n))$ and $(* *)$.
(2) Furthermore, the above presentation is unique if $n k+\operatorname{deg} B \leq \frac{g-4}{2}$.

Proof. (1) Suppose that $\operatorname{deg}(\tilde{R} \cap \tilde{F})=t \geq 2$ for some $\tilde{F} \in g_{k}^{1}$. Set $D_{t}:=\tilde{R} \cap \tilde{F}$. Then the equivalence $\mathcal{L} \simeq \mathcal{K}_{X}-\left(r g_{k}^{1}+\tilde{B}\right)+\tilde{R}$ gives

$$
\left.\left|\mathcal{K}_{X} \otimes \mathcal{L}^{-1}\left(\tilde{R}-D_{t}\right)\right|=\mid(r-1) g_{k}^{1}+\left(\tilde{F}-D_{t}\right)+\tilde{B}\right) \mid .
$$

By the following inequalities

$$
\begin{aligned}
\operatorname{Cliff}\left((r-1) g_{k}^{1}+\left(\tilde{F}-D_{t}\right)+\tilde{B}\right) & \leq \operatorname{deg}\left(r g_{k}^{1}+\tilde{B}\right)-t-2(r-1) \\
& =\left(\operatorname{deg}\left(r g_{k}^{1}+\tilde{B}\right)-2 r\right)-(t-2) \\
& \leq r(k-2)+\operatorname{deg} \tilde{B} \leq \frac{g-4}{2},
\end{aligned}
$$

Theorem 2.1 implies that $\left|(r-1) g_{k}^{1}+\left(\tilde{F}-D_{t}\right)+\tilde{B}\right|$ is compounded of g_{k}^{1}, i.e.,

$$
\left|(r-1) g_{k}^{1}+\left(\tilde{F}-D_{t}\right)+\tilde{B}\right|=s g_{k}^{1}+\{\text { base locus }\} \text { for some } s \geq r-1
$$

Then we have

$$
\left|(r-1) g_{k}^{1}+\left(\tilde{F}-D_{t}\right)+\tilde{B}\right|=(r-1) g_{k}^{1}+\left(\tilde{F}-D_{t}+\tilde{B}\right)
$$

since the conditions $D_{t} \leq \tilde{R}$ and $\operatorname{supp}(\tilde{B} \cap \tilde{R})=\emptyset$ imply $h^{0}\left(\tilde{F}-D_{t}+\tilde{B}\right)=1$. Thus \mathcal{L} admits the following presentation:

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\left((r-1) g_{k}^{1}+\left(\tilde{F}-D_{t}\right)+\tilde{B}\right)+\left(\tilde{R}-D_{t}\right) .
$$

From $\operatorname{supp}(\tilde{R} \cap \tilde{B})=\emptyset$ and $\tilde{R} \cap \tilde{F}=D_{t}$ we get

$$
\operatorname{supp}\left(\left(\tilde{F}-D_{t}+\tilde{B}\right) \cap\left(\tilde{R}-D_{t}\right)\right)=\emptyset
$$

And we have $(r-1)+3 \leq \operatorname{deg}\left(\tilde{R}-D_{t}\right) \leq 2(r-1)+2$ since \mathcal{L} is very ample and $\operatorname{deg} \tilde{R} \leq 2 r+2$ and $\operatorname{deg}\left(\tilde{R}-D_{t}\right) \leq \operatorname{deg} \tilde{R}-2$. Iterating such processes as many as possible, by $\operatorname{deg} \tilde{R} \leq 2 r+2$ we finally obtain for some $n^{\prime} \geq 1$

$$
\begin{equation*}
\mathcal{L} \simeq \mathcal{K}_{X}-\left(n^{\prime} g_{k}^{1}+B^{\prime}\right)+R^{\prime} \text { with } n^{\prime}(k-2)+\operatorname{deg} B^{\prime} \leq \frac{g-4}{2} \tag{2.1}
\end{equation*}
$$

such that $R^{\prime} \geq 0$ and $B^{\prime} \geq 0$ satisfy $\left(*\left(n^{\prime}\right)\right)$ and $\operatorname{deg}\left(R^{\prime} \cap F\right) \leq 1$ for any $F \in g_{k}^{1}$.
Assume that there exists a divisor $\tilde{F} \in g_{k}^{1}$ such that $\operatorname{deg}\left(B^{\prime} \cap \tilde{F}\right)=k-1$. Let $E_{k-1}:=B^{\prime} \cap \tilde{F}$ and $P:=\tilde{F}-E_{k-1}$. The presentation (2.1) gives
$\left|\mathcal{K}_{X} \otimes \mathcal{L}^{-1}\left(R^{\prime}+P\right)\right|=\left|n^{\prime} g_{k}^{1}+\left(B^{\prime}-E_{k-1}\right)+\left(E_{k-1}+P\right)\right|=\left|\left(n^{\prime}+1\right) g_{k}^{1}+\left(B^{\prime}-E_{k-1}\right)\right|$,
whose Clifford index does not exceed $\frac{g-4}{2}$ due to $n^{\prime}(k-2)+\operatorname{deg} B^{\prime} \leq \frac{g-4}{2}$. Hence Theorem 2.1 implies

$$
\left|\mathcal{K}_{X} \otimes \mathcal{L}^{-1}\left(R^{\prime}+P\right)\right|=\left(n^{\prime}+1\right) g_{k}^{1}+\left(B^{\prime}-E_{k-1}\right)
$$

whence

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\left(\left(n^{\prime}+1\right) g_{k}^{1}+\left(B^{\prime}-E_{k-1}\right)\right)+\left(R^{\prime}+P\right)
$$

Since $P \nless B^{\prime}, \operatorname{supp}\left(B^{\prime} \cap R^{\prime}\right)=\emptyset$ and $E_{k-1}+P=\tilde{F}$, we have

$$
\operatorname{supp}\left(\left(B^{\prime}-E_{k-1}\right) \cap\left(R^{\prime}+P\right)\right)=\emptyset, \operatorname{deg}\left(\left(R^{\prime}+P\right) \cap \tilde{F}\right)=1
$$

The hypothesis $k \geq 4$ gives $\operatorname{deg} B^{\prime} \geq k-1 \geq 3$ and thus $\operatorname{Cliff}\left(R^{\prime}+P\right) \leq$ $2 n^{\prime}+3 \leq n^{\prime}(k-2)+\operatorname{deg} B^{\prime} \leq \frac{g-4}{2}$. According to Theorem 2.1 it turns out $h^{0}\left(R^{\prime}+P\right)=1$ since $\operatorname{deg}\left(R^{\prime} \cap F\right) \leq 1$ for any $F \in g_{k}^{1}$.

By iterating the same arguments as the above, we finally get the following equivalence:

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R \text { with } n(k-2)+\operatorname{deg} B \leq \frac{g-4}{2}
$$

for some integer $n \geq 1, R \geq 0$ and $B \geq 0$ satisfying the conditions $(*(n))$ and (**).
(2) Suppose that the line bundle \mathcal{L} admits another presentation for an integer $m \geq 1$ such as

$$
\begin{equation*}
\mathcal{L} \simeq \mathcal{K}_{X}-\left(m g_{k}^{1}+\hat{B}\right)+\hat{R} \text { with } m k+\operatorname{deg} \hat{B} \leq \frac{g-4}{2} \tag{2.2}
\end{equation*}
$$

which satisfies the conditions $(*(m))$ and $(* *)$. Then the equivalences

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R \simeq \mathcal{K}_{X}-\left(m g_{k}^{1}+\hat{B}\right)+\hat{R}
$$

imply

$$
n g_{k}^{1}+B+\hat{R} \simeq m g_{k}^{1}+\hat{B}+R .
$$

Set $\mathcal{D}:=\left|n g_{k}^{1}+B+\hat{R}\right|=\left|m g_{k}^{1}+\hat{B}+R\right|$. If \mathcal{D} is not compounded of g_{k}^{1}, then $\operatorname{dim} \mathcal{D} \geq \max \{n+1, m+1\}$. If $m \geq n$, then we get $\operatorname{dim}|\mathcal{D}| \geq m+1$, whence the condition $\operatorname{deg} \hat{R} \leq 2 m+2$ yields

$$
\operatorname{Cliff}(\mathcal{D}) \leq n k+\operatorname{deg} B+\operatorname{deg} \hat{R}-2(m+1) \leq n k+\operatorname{deg} B \leq \frac{g-4}{2}
$$

It is a contradiction to Theorem 2.1. We have the same conclusion in case $m \leq n$ and hence \mathcal{D} is compounded of g_{k}^{1}. Since $\operatorname{deg}(R \cap F) \leq 1, \operatorname{deg}(\hat{R} \cap F) \leq 1$, $\operatorname{deg}(B \cap F) \leq k-2$ and $\operatorname{deg}(\hat{B} \cap F) \leq k-2$ for all $F \in g_{k}^{1}$, it turns out that $\mathcal{D}=n g_{k}^{1}+B+\hat{R}=m g_{k}^{1}+\hat{B}+R$, whence $m=n$ and $B+\hat{R}=\hat{B}+R$. By $\operatorname{supp}(B \cap R)=\emptyset$ and $\operatorname{supp}(\hat{B} \cap \hat{R})=\emptyset$ we conclude $B=\hat{B}$ and $R=\hat{R}$. Thus the proof is completed.

3. Main theorems

This section is devoted to characterizing nonspecial line bundles on general k-gonal curves which fail to be normally generated. The following theorem given by M. Green and R. Lazarsfeld plays a key role to prove our results.
Theorem 3.1 ([3], Theorem 3). Let X be a smooth curve of genus g and let \mathcal{L} be a nonspecial very ample line bundle on X with $\operatorname{deg} \mathcal{L}>\frac{3 g+1}{2}$. If \mathcal{L} fails to be normally generated, then there is a line bundle $\mathcal{A} \simeq \mathcal{L}(-R), R>0$, which satisfies the following conditions:

$$
\begin{array}{ll}
\text { (i) } \operatorname{deg} \mathcal{A} \geq \frac{g-1}{2}, & \text { (ii) } \operatorname{Cliff}(\mathcal{A}) \leq \operatorname{Cliff}(\mathcal{L}) \tag{3.1}\\
\text { (iii) } h^{1}(\mathcal{A}) \geq h^{1}(\mathcal{L})+2, & \text { (iv) } h^{0}(\mathcal{A}) \geq 2
\end{array}
$$

By Theorem 3.1 and Proposition 2.2 we obtain necessary conditions for the failure of the normal generation of nonspecial line bundles on general k-gonal curves.

Theorem 3.2. Let X be a general k-gonal curve of genus g with $4 \leq k \leq \frac{g+1}{2}$ and let \mathcal{L} be a nonspecial very ample line bundle with $\operatorname{deg} \mathcal{L} \geq \frac{3}{2} g+\frac{g-2}{k}+1$. If \mathcal{L} fails to be normally generated, then \mathcal{L} admits the following presentation:

$$
\begin{equation*}
\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R \tag{3.2}
\end{equation*}
$$

for some integer $n \geq 1$, divisors R and B satisfying the conditions $(*(n))$ and $(* *)$. Furthermore, the presentation (3.2) is unique in case $n k+\operatorname{deg} B \leq \frac{g-4}{2}$.
Proof. Since \mathcal{L} is not normally generated and $\operatorname{deg} \mathcal{L}>\frac{3 g+1}{2}$, there is a line bundle $\mathcal{A} \simeq \mathcal{L}(-\tilde{R}), \tilde{R}>0$ such that \mathcal{A} satisfies the conditions in (3.1). The assumption $4 \leq k \leq \frac{g+1}{2}$ yields the inequalities:

$$
\begin{aligned}
\frac{k-2}{2 k}(g-2)-\frac{g-4}{2} & =\frac{(k-2)(g-2)-(g-4) k}{2 k} \\
& =\frac{2 k-2 g+4}{2 k} \leq \frac{-g+5}{2 k}<0
\end{aligned}
$$

whence we have $\operatorname{Cliff}(\mathcal{A})<\frac{g-4}{2}$ by $\operatorname{Cliff}(\mathcal{A}) \leq \operatorname{Cliff}(\mathcal{L})=2 g-\operatorname{deg} \mathcal{L} \leq \frac{k-2}{2 k}(g-$ $2)$.

Assume $\operatorname{deg} \mathcal{A} \leq g-1$. By Theorem 2.1, we get $|\mathcal{A}|=(\operatorname{dim}|\mathcal{A}|) g_{k}^{1}+\tilde{B}$. Then

$$
\operatorname{dim}|\mathcal{A}| \leq \frac{g-2}{2 k}-\frac{\operatorname{deg} \tilde{B}}{k-2}
$$

by $\operatorname{Cliff}(\mathcal{A})=(k-2) \operatorname{dim}|\mathcal{A}|+\operatorname{deg} \tilde{B} \leq \operatorname{Cliff}(\mathcal{L}) \leq \frac{(k-2)}{2 k}(g-2)$. This yields

$$
\frac{g-1}{2} \leq \operatorname{deg}(\mathcal{A}) \leq \frac{g-2}{2}+\left(1-\frac{k}{k-2}\right) \operatorname{deg} \tilde{B}<\frac{g-1}{2}
$$

which cannot occur. Thus $\operatorname{deg} \mathcal{A} \geq g$, i.e., $\operatorname{deg} \mathcal{K}_{X} \otimes \mathcal{A}^{-1} \leq g-2$.
According to Theorem 2.1 we have $\left|\mathcal{K}_{X} \otimes \mathcal{A}^{-1}\right|=r g_{k}^{1}+\tilde{B}$, where $r:=$ $\operatorname{dim}\left|\mathcal{K}_{X} \otimes \mathcal{A}^{-1}\right|$. Thus the conditions that $\operatorname{Cliff}(\mathcal{A}) \leq \operatorname{Cliff}(\mathcal{L})$ and $\mathcal{A} \simeq \mathcal{L}(\tilde{R})$ yield
$r(k-2)+\operatorname{deg} \tilde{B}=\operatorname{Cliff}\left(\mathcal{K}_{X} \otimes \mathcal{A}^{-1}\right) \leq \operatorname{Cliff}(\mathcal{L})=2 g-\operatorname{deg} \mathcal{L}=r k+2+\operatorname{deg} \tilde{B}-\operatorname{deg} \tilde{R}$,
whence $\operatorname{deg} \tilde{R} \leq 2 r+2$. Since \mathcal{L} is very ample, it turns out $r+3 \leq \operatorname{deg} \tilde{R} \leq 2 r+2$ and hence $r \geq 1$. Therefore,

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\left(r g_{k}^{1}+\tilde{B}\right)+\tilde{R} \text { with } r \geq 1, r+3 \leq \operatorname{deg} \tilde{R} \leq 2 r+2
$$

Since $\operatorname{deg} \tilde{R} \leq 2 r+2 \leq \operatorname{Cliff}\left(r g_{k}^{1}+\tilde{B}\right) \leq \frac{g-4}{2}$ for $k \geq 4$, Theorem 2.1 forces

$$
|\tilde{R}|=l g_{k}^{1}+R^{\prime} \text { with } l \leq r-1,
$$

whence

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\left((r-l) g_{k}^{1}+\tilde{B}\right)+R^{\prime}, \quad R^{\prime}:=\tilde{R}-l g_{k}^{1}
$$

which satisfies that $r-l \geq 1, h^{0}\left(R^{\prime}\right)=1, h^{0}(\tilde{B})=1$ and $\operatorname{deg} R^{\prime} \leq 2(r-l)+2$. Here, we may assume $\operatorname{supp}\left(R^{\prime} \cap \tilde{B}\right)=\emptyset$. As a result, by Proposition 2.2 the line bundle \mathcal{L} can be expressed by

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R
$$

for some divisors R and B satisfying $(*(n))$ and $(* *)$. The uniqueness of the presentation (3.2) follows from Proposition 2.2.

From Theorem 3.2 we obtain a result on the normal generation of line bundles on general k-gonal curves as follows.

Corollary 3.3. Let X be a general k-gonal curve of genus g with $4 \leq k \leq \frac{g+1}{2}$. And let $g_{d}^{0} \in X^{(d)}$ and $\xi_{e}^{0} \in X^{(e)} \operatorname{satisfy} \operatorname{supp}\left(g_{d}^{0} \cap \xi_{e}^{0}\right)=\emptyset, \xi_{e}^{0} \nless F$ and $\operatorname{deg}\left(g_{d}^{0} \cap F\right) \leq k-2$ for any $F \in g_{k}^{1}$. If $e \geq 3$ and $d \leq \frac{g}{2}-\frac{g-2}{k}-3$, then $\mathcal{L} \simeq \mathcal{K}_{X}-g_{d}^{0}+\xi_{e}^{0}$ is a nonspecial normally generated line bundle.

Proof. The line bundle \mathcal{L} is trivially nonspecial and the condition $d \leq \frac{g}{2}-\frac{g-2}{k}-$ 3 is equivalent to $\operatorname{deg} \mathcal{L} \geq \frac{3}{2} g+\frac{g-2}{k}+1+e$. Suppose that $\mathcal{L} \simeq \mathcal{K}_{X}-g_{d}^{0}+\xi_{e}^{0}$ is not very ample. Then,

$$
\mathcal{K}_{X}-g_{d}^{0}+\xi_{e}^{0} \simeq \mathcal{K}_{X}-h_{t}^{0}+\zeta_{2}^{0} \text { for some } h_{t}^{0} \in X^{(t)}, \zeta_{2}^{0} \in X^{(2)} .
$$

This implies that $g_{d}^{0}+\zeta_{2}^{0} \simeq h_{t}^{0}+\xi_{e}^{0}$ and $g_{d}^{0}+\zeta_{2}^{0} \neq h_{t}^{0}+\xi_{e}^{0}$ as divisors, whence $\operatorname{dim}\left|g_{d}^{0}+\zeta_{2}^{0}\right| \geq 1$. Since $d+2 \leq \frac{g-4}{2}$ and $\operatorname{deg}\left(g_{d}^{0}, F\right) \leq k-2$ for any $F \in g_{k}^{1}$, Theorem 2.1 implies

$$
\left|h_{t}^{0}+\xi_{e}^{0}\right|=\left|g_{d}^{0}+\zeta_{2}^{0}\right|=g_{k}^{1}+B \quad \text { and } \quad B \leq g_{d}^{0}
$$

Hence the condition $\operatorname{supp}\left(g_{d}^{0} \cap \xi_{e}^{0}\right)=\emptyset$ gives $\xi_{e}^{0} \leq \tilde{F}$ for some $\tilde{F} \in g_{k}^{1}$. Therefore \mathcal{L} is very ample by the hypothesis $\xi_{e}^{0} \nless F$ for any $F \in g_{k}^{1}$.

Assume that \mathcal{L} fails to be normally generated. Since $\operatorname{deg} \mathcal{L} \geq \frac{3}{2} g+\frac{g-2}{k}+1$, Theorem 3.2 gives $\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R$ for some R and B satisfying the conditions $(*(n))$ and $(* *)$. The equivalence $\mathcal{L} \simeq \mathcal{K}_{X}-g_{d}^{0}+\xi_{e}^{0}$ yields

$$
n g_{k}^{1}+B+\xi_{e}^{0} \simeq g_{d}^{0}+R,
$$

and

$$
\operatorname{Cliff}\left(g_{d}^{0}+R\right) \leq d+2 n+2-2 n \leq \frac{g-4}{2}
$$

According to Theorem 2.1, the linear system $\left|n g_{k}^{1}+B+\xi_{e}^{0}\right|=\left|g_{d}^{0}+R\right|$ is compounded of g_{k}^{1} and $\operatorname{dim}\left|g_{d}^{0}+R\right| \geq n \geq 1$. It can not occur since $\operatorname{deg}\left(g_{d}^{0} \cap\right.$ $F) \leq k-2$ and $\operatorname{deg}(R, F) \leq 1$ for any $F \in g_{k}^{1}$. Thus \mathcal{L} is normally generated.

The converse of Theorem 3.2 holds under the condition (3.3) in Theorem 3.4 .

Theorem 3.4. Let X be a general k-gonal curve of genus $g \geq 12$ with $k \geq$ 4 and let R and B be divisors on X satisfying $(*(n))$ for some $n \geq 1$ and $\operatorname{deg}(R \cap F) \leq 1$ for any $F \in g_{k}^{1}$. Then $\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R$ is very ample and fails to be normally generated if

$$
\begin{equation*}
2 n(k-2)+\operatorname{deg} B \leq \frac{g-4}{2} \tag{3.3}
\end{equation*}
$$

Proof. Assume that \mathcal{L} is not very ample. Then there exist divisors g_{d}^{0} and ξ_{2}^{0} such that

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{k}^{1}+B\right)+R \simeq \mathcal{K}_{X}-g_{d}^{0}+\xi_{2}^{0},
$$

with $\operatorname{supp}\left(g_{d}^{0} \cap \xi_{2}^{0}\right)=\emptyset$. Then we have $n g_{k}^{1}+B+\xi_{2}^{0} \simeq g_{d}^{0}+R$. Let

$$
\mathcal{D}:=\left|n g_{k}^{1}+B+\xi_{2}^{0}\right|=\left|g_{d}^{0}+R\right|
$$

The equation (3.3) gives

$$
\operatorname{Cliff}\left(n g_{k}^{1}+B+\xi_{2}^{0}\right) \leq n k+\operatorname{deg} B+2-2 n=n(k-2)+\operatorname{deg} B+2 \leq \frac{g-4}{2}
$$

and hence $\mathcal{D}=(\operatorname{dim}|\mathcal{D}|) g_{k}^{1}+B^{\prime}$ by Theorem 2.1 where B^{\prime} is a base locus. Then

$$
\operatorname{dim}|\mathcal{D}|=\operatorname{dim}\left|n g_{k}^{1}+B+\xi_{2}^{0}\right|=\operatorname{dim}\left|g_{d}^{0}+R\right| \leq n+2
$$

since $\operatorname{dim}\left|n g_{k}^{1}+B\right|=n$. It gives a contradiction since $\operatorname{deg} R \geq n+3, \operatorname{supp}(R \cap$ $B)=\emptyset$, and $\operatorname{deg}(R \cap F) \leq 1$ for any $F \in g_{k}^{1}$. Thus \mathcal{L} is very ample.

To show the failure of the normal generation of \mathcal{L}, we observe that

$$
h^{1}\left(\mathcal{I}_{R / X}(2)\right)=0
$$

which comes from the inequality

$$
\operatorname{deg}\left(\mathcal{K}_{X} \otimes \mathcal{L}^{-2}(R)\right)=2 n k+2 \operatorname{deg} B-(2 g-2)-\operatorname{deg} R<0
$$

due to the equation (3.3). Therefore, \mathcal{L} is not normally generated if R fails to impose independent conditions on quadrics in $\langle R\rangle_{\mathcal{L}}$ by the exact sequences:

$$
\begin{aligned}
& 0 \rightarrow \mathcal{I}_{R}(2) \rightarrow \quad \mathcal{O}_{\mathbb{P}^{N}}(2) \quad \rightarrow \mathcal{O}_{R}(2) \rightarrow 0, \\
& 0 \rightarrow \mathcal{I}_{X / \mathbb{P}^{N}}(2) \rightarrow \mathcal{I}_{R / \mathbb{P}^{N}}(2) \rightarrow \mathcal{I}_{R / X}(2) \rightarrow 0,
\end{aligned}
$$

where $\mathbb{P}^{N}:=\mathbb{P} H^{0}(\mathcal{L})^{*}$.
We claim that R fails to impose independent conditions on quadrics in $\langle R\rangle_{\mathcal{L}}$. Set $s:=\operatorname{dim}\langle R\rangle_{\mathcal{L}}$. The Riemann-Roch theorem gives $\operatorname{deg} R=n+s+2$ which forces $s \leq n$ for $\operatorname{deg} R \leq 2 n+2$. Theorem 2.1 implies $\operatorname{dim}\left|s g_{k}^{1}\right|=s$ by $s(k-2) \leq$ $\frac{g-4}{2}$. Since

$$
\begin{aligned}
h^{0}\left(\mathcal{L}\left(-s g_{k}^{1}\right)\right) & \geq \operatorname{deg} \mathcal{L}-s k-g+1 \\
& =2 g-2-n k-\operatorname{deg} B+\operatorname{deg} R-s k-g+1 \\
& =2 g-2-n k-\operatorname{deg} B+s+n+2-s k-g+1 \\
& =(g+1)-(k-1)(n+s)-\operatorname{deg} B \\
& \geq(g+1)-(2 n(k-1)+\operatorname{deg} B) \geq 1 \text { by }(3.3),
\end{aligned}
$$

Figure 1.
there exists an effective divisor $M \in\left|\mathcal{L}\left(-s g_{k}^{1}\right)\right|$. Note that $|\mathcal{L}(-M)|=s g_{k}^{1}$. Accordingly we obtain the commutative diagram in Figure 1, where $\pi_{\langle M\rangle_{\mathcal{L}}}$ is a natural projection from $\langle M\rangle_{\mathcal{L}}$.

Let P be a point of X with $P \leq R$. Then we have $h^{0}\left((n+s) g_{k}^{1}+B-R\right)=$ $h^{0}\left((n+s) g_{k}^{1}+B-(R-P)\right)=0$, since $\operatorname{deg} R=n+s+2, \operatorname{supp}(B \cap R)=\emptyset$, $\operatorname{deg}(R \cap F) \leq 1$ for any $F \in g_{k}^{1}$ and

$$
\left|(n+s) g_{k}^{1}+B\right|=(n+s) g_{k}^{1}+B
$$

by (3.3). Then,

$$
\begin{aligned}
& h^{0}(M)-h^{0}(M-P) \\
= & h^{0}\left(\mathcal{L}\left(-s g_{k}^{1}\right)\right)-h^{0}\left(\mathcal{L}\left(-s g_{k}^{1}-P\right)\right) \\
= & h^{0}\left((n+s) g_{k}^{1}+B-R\right)-h^{0}\left((n+s) g_{k}^{1}+B-(R-P)\right)+1 \\
= & 1
\end{aligned}
$$

and hence P is not a base point of $|M|$. This implies $\langle M\rangle_{\mathcal{L}} \cap\langle R\rangle_{\mathcal{L}}=\emptyset$ since $\operatorname{dim}\langle M+R\rangle_{\mathcal{L}}=N, \operatorname{dim}\langle M\rangle_{\mathcal{L}}=N-s-1$ and $\operatorname{dim}\langle R\rangle_{\mathcal{L}}=s$. Hence $\pi_{\langle M\rangle_{\mathcal{L}}}$ can be regarded as a projection to $\langle R\rangle_{\mathcal{L}}$. The condition that $\operatorname{deg}(R \cap F) \leq 1$ for any $F \in g_{k}^{1}$ implies that $\varphi_{\mathcal{L}}(R)$ lies on a rational normal curve $\iota\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{s}$ with $\operatorname{deg} R \geq 2 s+2$. Since any $2 s+2$ points on a rational normal curve fails to impose independent conditions on quadrics, $\varphi_{\mathcal{L}}(R)$ does fail to impose independent conditions on quadrics in $\langle R\rangle_{\mathcal{L}}$.

The following two remarks tell that for a non-normally generated line bundle \mathcal{L} with $h^{1}(\mathcal{L})=0$, the presentation (3.2) with $(*(n))$ and $(* *)$ also holds in case $k=2,3$.

Remark 3.5. Let X be a hyperelliptic curve and let \mathcal{L} be a very ample line bundle of degree $2 g-\beta$ on X with $\beta \geq 0$. Since \mathcal{L} is very ample, it is nonspecial and thus there exist divisors $\xi_{e}^{0} \in X^{(e)}$ and $g_{d}^{0} \in X^{(d)}$ with $\left(\xi_{e}^{0} \cap g_{d}^{0}\right)=\emptyset$ such that

$$
\mathcal{L} \simeq \mathcal{K}_{X}-g_{d}^{0}+\xi_{e}^{0}, d=\beta+e-2
$$

The very ampleness of \mathcal{L} gives $e \geq 3$. Set $h_{d}^{0}:=d g_{2}^{1}-g_{d}^{0}$ and $R:=\xi_{e}^{0}+h_{d}^{0}$. Then we get

$$
\mathcal{L} \simeq \mathcal{K}_{X}-d g_{2}^{1}+R \text { with }(*(d)) \text { and }(* *),
$$

since the conditions that $\operatorname{supp}\left(\xi_{e}^{0} \cap g_{d}^{0}\right)=\emptyset$ and $g_{d}^{0}=d g_{2}^{1}-h_{d}^{0}$ imply $h^{0}\left(\xi_{e}^{0}+h_{d}^{0}\right)=$ 1.

Remark 3.6. Let X be a trigonal curve of genus $g>4$ and Maroni-invariant m_{X}. Let \mathcal{L} be a nonspecial very ample line bundle of degree $2 g-\beta$ with $0 \leq \beta \leq m_{X}$. If \mathcal{L} fails to be normally generated, then Corollary 1 in [6] tells that

$$
\begin{equation*}
\mathcal{L} \simeq \mathcal{K}_{X}-\beta g_{3}^{1}+\tilde{R} \text { with } \operatorname{deg} \tilde{R}=2 \beta+2 \tag{3.4}
\end{equation*}
$$

We observe that the form (3.4) is equivalent to the presentation (3.2) in the following. For the presentation (3.4), set

$$
\begin{aligned}
& \left\{F_{1}, \ldots, F_{f}\right\}:=\left\{\tilde{R} \cap F \mid \tilde{R} \cap F=F, F \in g_{3}^{1}\right\} \\
& \left\{D_{1}, \ldots, D_{l}\right\}:=\left\{\tilde{R} \cap F \mid \operatorname{deg}(\tilde{R} \cap F)=2, F \in g_{3}^{1}\right\}
\end{aligned}
$$

Then, $\operatorname{deg}\left(\left(\tilde{R}-\sum F_{i}-\sum D_{j}\right) \cap F\right) \leq 1$ for any $F \in g_{k}^{1}$ and

$$
\begin{aligned}
\mathcal{L} & \simeq \mathcal{K}_{X}-\beta g_{3}^{1}+\tilde{R} \simeq \mathcal{K}_{X}-(\beta-f) g_{3}^{1}+\left(\tilde{R}-f g_{3}^{1}\right) \\
& \simeq \mathcal{K}_{X}-\left((\beta-f-l) g_{3}^{1}+B\right)+R
\end{aligned}
$$

where $B:=\sum_{i=1}^{l}\left(g_{3}^{1}-D_{j}\right)$ and $R:=\tilde{R}-f g_{3}^{1}-\sum_{i=1}^{l} D_{i}$. The conditions $h^{1}(\mathcal{L})=0$ and $\operatorname{deg} \tilde{R} \leq 2 \beta+2$ yield $\beta-f-l \geq 1$, whence R and B satisfy conditions $(*(\beta-f-l))$ and $(* *)$.

Conversely, any line bundle which has a presentation (3.2) can be written in the form (3.4): Assume that there exist some divisors R and B satisfying $(*(n))$ and $(* *)$ for an integer $n \geq 1$ such that $\mathcal{L} \simeq \mathcal{K}_{X}-\left(n g_{3}^{1}+B\right)+R$. Let B^{\prime} be a divisor such that $B+B^{\prime}=f g_{3}^{1}$ where $f:=\operatorname{deg} B$ and let $\gamma:=2 n+2-\operatorname{deg} R$ and $\beta:=n+f+\gamma$. Then we have

$$
\begin{aligned}
\mathcal{L} & \simeq \mathcal{K}_{X}-\left(n g_{3}^{1}+B\right)+R \simeq \mathcal{K}_{X}-(n+f) g_{3}^{1}+\left(R+B^{\prime}\right) \\
& \simeq \mathcal{K}_{X}-(n+f+\gamma) g_{3}^{1}+\left(R+B^{\prime}+\gamma g_{3}^{1}\right) \\
& \simeq \mathcal{K}_{X}-\beta g_{3}^{1}+R_{2 \beta+2}
\end{aligned}
$$

where $R_{2 \beta+2}:=R+B^{\prime}+\gamma g_{3}^{1}$. Therefore two presentations (3.2) and (3.4) are equivalent.

References

[1] E. Ballico, C. Keem, and S. Kim, Normal generation of line bundles on a general k gonal algebraic curve, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003), no. 3, 557-562.
[2] G. Castelnuovo, Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva algebrica, Rend. Circ. Mat. Palermo 7 (1893), 89-110.
[3] M. Green and R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), no. 1, 73-90.
[4] S. Kim, On the Clifford sequence of a general k-gonal curve, Indag. Math. (N.S.) 8 (1997), no. 2, 209-216.
[5] H. Lange and G. Martens, Normal generation and presentation of line bundles of low degree on curves, J. Reine Angew. Math. 356 (1985), 1-18.
[6] G. Martens and F.-O. Schreyer, Line bundles and syzygies of trigonal curves, Abh. Math. Sem. Univ. Hamburg 56 (1986), 169-189.
[7] A. Mattuck, Symmetric products and Jacobians, Amer. J. Math. 83 (1961), 189-206.
[8] D. Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) pp. 29-100 Edizioni Cremonese, Rome 1970.

Youngook Choi
Department of Mathematics Education
Yeungnam University
Gyeongbuk 712-749, Korea
E-mail address: ychoi824@yu.ac.kr
Seonja Kim
Department of Electronic Engineering
Chungwoon University
Incheon 402-803, Korea
E-mail address: sjkim@chungwoon.ac.kr

