References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
- G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl. 18 (2012), no. 2, 362-377. https://doi.org/10.1016/j.ffa.2011.09.005
-
G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length
$2p^n$ over a finite field, Finite Fields Appl. 19 (2013), no. 1, 39-54. https://doi.org/10.1016/j.ffa.2012.10.003 - E. R. Berlekamp, Negacyclic codes for the Lee metric, Proc. Combin. Math. Appl., 298-316, Univ. North Carolina Press, Chapel Hill, 1969.
- E. R. Berlekamp, Algebraic Coding Theory, McGraw -Hill Book Company, New York, 1968.
- T. Blackford, Negacyclic duadic codes, Finite Fields Appl. 14 (2008), no. 4, 930-943. https://doi.org/10.1016/j.ffa.2008.05.004
-
H. Q. Dinh, Constacyclic codes of length
$p^s$ over${\mathbb{F}}_{p^m}$ +$u{\mathbb{F}}_{p^m}$ , J. Algebra 324 (2010), no. 5, 940-950. https://doi.org/10.1016/j.jalgebra.2010.05.027 -
H. Q. Dinh, Repeated-root constacyclic codes of length
$2p^s$ , Finite Fields Appl. 18 (2012), no. 1, 133-143. https://doi.org/10.1016/j.ffa.2011.07.003 -
H. Q. Dinh, Structure of repeated-root constacyclic codes of length
$3p^s$ and their duals, Discrete Math. 313 (2013), no. 9, 983-991. https://doi.org/10.1016/j.disc.2013.01.024 -
H. Q. Dinh, On repeated-root constacyclic codes of length
$4p^s$ , Asian-Eur. J. Math. 6 (2013), no. 2, 1350020, 25 pp. -
H. Q. Dinh, Repeated-root cyclic and negacyclic codes of length
$6p^s$ , Ring theory and its applications, 69-87, Contemp. Math., 609, Amer. Math. Soc., Providence, RI, 2014. - K. Guenda and T. A. Gulliver, Self-dual repeated-root cyclic and negacyclic codes over finite fields, Proc. IEEE Int. Symp. Inform. Theory 2012 (2012), 2904-2908.
- Y. Jia, S. Ling, and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inform. Theory 57 (1994), no. 4, 2241-2251.
- R. G. Kelsch and D. H. Green, Nonbinary negacyclic code which exceeds Berlekamp's (p-1)/2 bound, Electron. Lett. 7 (1971), 664-665.
- J. L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992), 337-342. https://doi.org/10.1016/0012-365X(92)90563-U
- E. Prange, Cyclic error-correcting codes in two symbols, Air Force Cambridge Research Labs, Bedford, Mass, TN-57-103, 1957.
- N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math. 285 (2004), no. 1-3, 345-347. https://doi.org/10.1016/j.disc.2004.05.005
- A. Sharma, Constacyclic codes over finite fields, Communicated for publication.
-
A. Sharma, Self-dual and self-orthogonal negacyclic codes of length
$2^mp^n$ over a finite field, Discrete Math. 338 (2015), no. 4, 576-592. https://doi.org/10.1016/j.disc.2014.11.008 -
A. Sharma, Self-orthogonal and complementary-dual cyclic codes of length
$p^n{\el}^m$ over a finite field, Communicated for publication. -
A. Sharma, Repeated-root constacyclic codes of length
${\el}^tp^s$ and their dual codes, Cryptogr. Commun. 7 (2015), no. 2, 229-255. https://doi.org/10.1007/s12095-014-0106-5 - A. Sharma, G. K. Bakshi, and M. Raka, Polyadic codes of prime power length, Finite Fields Appl. 13 (2007), no. 4, 1071-1085. https://doi.org/10.1016/j.ffa.2006.12.006
- X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994), no. 1-3, 391-393. https://doi.org/10.1016/0012-365X(94)90283-6
Cited by
- On constacyclic codes over finite fields vol.8, pp.4, 2016, https://doi.org/10.1007/s12095-015-0163-4