DOI QR코드

DOI QR Code

SIMPLE-ROOT NEGACYCLIC CODES OF LENGTH 2pnm OVER A FINITE FIELD

  • SHARMA, ANURADHA (Department of Mathematics Indian Institute of Technology Delhi)
  • Received : 2014.11.18
  • Published : 2015.09.01

Abstract

Let p, ${\ell}$ be distinct odd primes, q be an odd prime power with gcd(q, p) = gcd(q,${\ell}$) = 1, and m, n be positive integers. In this paper, we determine all self-dual, self-orthogonal and complementary-dual negacyclic codes of length $2p^{n{\ell}m}$ over the finite field ${\mathbb{F}}_q$ with q elements. We also illustrate our results with some examples.

Keywords

References

  1. T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
  2. G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl. 18 (2012), no. 2, 362-377. https://doi.org/10.1016/j.ffa.2011.09.005
  3. G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl. 19 (2013), no. 1, 39-54. https://doi.org/10.1016/j.ffa.2012.10.003
  4. E. R. Berlekamp, Negacyclic codes for the Lee metric, Proc. Combin. Math. Appl., 298-316, Univ. North Carolina Press, Chapel Hill, 1969.
  5. E. R. Berlekamp, Algebraic Coding Theory, McGraw -Hill Book Company, New York, 1968.
  6. T. Blackford, Negacyclic duadic codes, Finite Fields Appl. 14 (2008), no. 4, 930-943. https://doi.org/10.1016/j.ffa.2008.05.004
  7. H. Q. Dinh, Constacyclic codes of length $p^s$ over ${\mathbb{F}}_{p^m}$ + $u{\mathbb{F}}_{p^m}$, J. Algebra 324 (2010), no. 5, 940-950. https://doi.org/10.1016/j.jalgebra.2010.05.027
  8. H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl. 18 (2012), no. 1, 133-143. https://doi.org/10.1016/j.ffa.2011.07.003
  9. H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Math. 313 (2013), no. 9, 983-991. https://doi.org/10.1016/j.disc.2013.01.024
  10. H. Q. Dinh, On repeated-root constacyclic codes of length $4p^s$, Asian-Eur. J. Math. 6 (2013), no. 2, 1350020, 25 pp.
  11. H. Q. Dinh, Repeated-root cyclic and negacyclic codes of length $6p^s$, Ring theory and its applications, 69-87, Contemp. Math., 609, Amer. Math. Soc., Providence, RI, 2014.
  12. K. Guenda and T. A. Gulliver, Self-dual repeated-root cyclic and negacyclic codes over finite fields, Proc. IEEE Int. Symp. Inform. Theory 2012 (2012), 2904-2908.
  13. Y. Jia, S. Ling, and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inform. Theory 57 (1994), no. 4, 2241-2251.
  14. R. G. Kelsch and D. H. Green, Nonbinary negacyclic code which exceeds Berlekamp's (p-1)/2 bound, Electron. Lett. 7 (1971), 664-665.
  15. J. L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992), 337-342. https://doi.org/10.1016/0012-365X(92)90563-U
  16. E. Prange, Cyclic error-correcting codes in two symbols, Air Force Cambridge Research Labs, Bedford, Mass, TN-57-103, 1957.
  17. N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math. 285 (2004), no. 1-3, 345-347. https://doi.org/10.1016/j.disc.2004.05.005
  18. A. Sharma, Constacyclic codes over finite fields, Communicated for publication.
  19. A. Sharma, Self-dual and self-orthogonal negacyclic codes of length $2^mp^n$ over a finite field, Discrete Math. 338 (2015), no. 4, 576-592. https://doi.org/10.1016/j.disc.2014.11.008
  20. A. Sharma, Self-orthogonal and complementary-dual cyclic codes of length $p^n{\el}^m$ over a finite field, Communicated for publication.
  21. A. Sharma, Repeated-root constacyclic codes of length ${\el}^tp^s$ and their dual codes, Cryptogr. Commun. 7 (2015), no. 2, 229-255. https://doi.org/10.1007/s12095-014-0106-5
  22. A. Sharma, G. K. Bakshi, and M. Raka, Polyadic codes of prime power length, Finite Fields Appl. 13 (2007), no. 4, 1071-1085. https://doi.org/10.1016/j.ffa.2006.12.006
  23. X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994), no. 1-3, 391-393. https://doi.org/10.1016/0012-365X(94)90283-6

Cited by

  1. On constacyclic codes over finite fields vol.8, pp.4, 2016, https://doi.org/10.1007/s12095-015-0163-4