DOI QR코드

DOI QR Code

Development of High-performance Microwave Water Surface Current Meter for General Use to Extend the Applicable Velocity Range of Microwave Water Surface Current Meter on River Discharge Measurements

전자파표면유속계를 이용한 하천유량측정의 적용범위 확장을 위한 고성능 범용 전자파표면유속계의 개발

  • Kim, Youngsung (K-water Institute, Korea Water Resources Corporation) ;
  • Won, Nam-Il (K-water Institute, Korea Water Resources Corporation) ;
  • Noh, Joonwoo (K-water Institute, Korea Water Resources Corporation) ;
  • Park, Won-Cheol (Gyeong-in Ara Waterway Business Division, Korea Water Resources Corporation)
  • 김영성 (한국수자원공사 K-water) ;
  • 원남일 (한국수자원공사 K-water) ;
  • 노준우 (한국수자원공사 K-water) ;
  • 박원철 (한국수자원공사 아라뱃길관리처 관리처)
  • Received : 2014.07.21
  • Accepted : 2015.06.11
  • Published : 2015.08.31

Abstract

To overcome the difficulties of discharge measurements during flood season, MWSCM(micowave water surface current meter) which measures river surface velocities without contacting water has been applied in field work since its development. The existing version of MWSCM is for floods so that its applicability is low due to the short periods of floods. Therefore the renovative redesign of MWSCM to increase the applicability was conducted so that it can be applied to the discharge measurements during normal flows as well as flood ones by extending the measurable range of velocity. A newly developed high-performance MWSCM for general use can measure the velocity range of 0.03-20.0 m/s from flood flows to normal flows, whereas MWSCM for floods can measure the velocity range of 0.5-10.0 m/s. The improvement of antenna isolation between transmitter and receiver to block the inflow of transmitted singals to receiver and the improvement of phase noise of oscillator are necessary for detecting low velocity with MWSCM technology. Separate type antenna of transmitting and receiving signals is developed for isolation enhancement and phase locked loop synthesizer as an oscillator is applied to high-performance MWSCM for general use. Microwave frequency of 24 GHz is applied to the new MWSCM rather than 10 GHz to make the new MWSCM small and light for convenient use of it at fields. Improvement requests on MWSCM for floods-stable velocity measurement, self test, low power consumtion, and waterproof and dampproof-from the users of it has been reflected on the development of the new version of MWSCM.

홍수기 유량측정의 어려움을 극복하고자 물과 비접촉식으로 유속을 측정하여 유량을 산정하는 전자파표면유속계를 개발하여 실무에 적용하고 있다. 기존에 사용 중인 전자파표면유속계는 홍수용으로 연중 활용도가 낮아 이의 활용도를 높이고자 전자파표면유속계의 성능개선을 통하여 유속측정범위를 확장하여 평 갈수기에도 하천 유량측정이 적용할 수 있게 하였다. 즉 기존 홍수용 전자파표면유속계의 유속측정범위가 0.5~10.0m/s이었던 반면, 금번 개발된 고성능 범용 전자파표면유속계는 0.03~20.0m/s로 홍수기뿐만 아니라 평수기에 유속측정이 가능하도록 성능을 개선하였다. 전자파표면유속계를 이용한 저유속의 측정을 위해서 필요한 요소를 조사한 결과, 송신신호의 수신단 유입을 차단하여 저유속의 미세한 수신신호에 대한 검출능력을 향상할 수 있도록 송수신 격리도의 개선, 이와 함께 공진기의 위상잡음 특성개선이 저유속의 검출에 필수사항임을 파악하였다. 따라서 이를 감안하여 안테나의 송신부와 수신부가 분리된 안테나를 개발함으로써 송수신 격리도를 개선하였고, 기존 공진기의 위상잡음 특성을 개선하기 위하여 위상고정주파수합성기를 공진기로 적용함으로써 저유속 검출 성능을 개선하였다. 또한 고성능 범용 전자파표면 유속계의 사용편의성 증진을 위하여 안테나의 소형, 경량화 제작을 가능토록 하고자 사용주파수(10 GHz$\rightarrow$24GHz)를 변경하였다. 이와 더불어 기존 전자파표면유속계 사용자들의 개선요구사항-측정유속 안정화, 자체점검기능, 저전력, 방수 방습-을 반영함으로써 현장에서 유량측정하기에 간편한 기기로 개발하였다.

Keywords

References

  1. Costa, J.E., Spicer, K.R., Cheng, R.T., Haeni, F.P., Melcher, N.B., and Thurman, E.M. (2000). "Measuring stream discharge by non-contact methods: A proof-of-concept experiment." Geophys. Res. Lett., Vol. 27, pp. 553-556. https://doi.org/10.1029/1999GL006087
  2. Costa, J.E., Cheng, R.T., Haeni, F.P., Melcher, N., Spicer, K.R., Hayes, E., Plant, W., Hayes, K., Teague, C., and Barrick, D. (2006). Use of radars to monitor stream discharge by noncontact methods, Water Resources Research, 42, W07422, doi:10.1029/2005WR004430.
  3. Fujita, I., and Komura, S. (1994). "Application of video image analysis for measurements of river-surface flows." Proc. of Hydraulic Engineering, JSCE, Vol. 38, pp. 733-738. https://doi.org/10.2208/prohe.38.733
  4. Hauet, A, Kruger, A., Krajewski, W.F., Bradley, A., Muste, M., and Wilson, M. (2005). Real-time estimation of discharge of the Iowa river using image-based method-user's manual. IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA.
  5. Kim, S., Yu, K., and Yoon, B. (2011) "Real-time Discharge Measurement of the River Using Fixed-type Surface Image Velocimetry." J. of Korea Water Reso. Asso. Vol. 44, pp. 377-388. https://doi.org/10.3741/JKWRA.2011.44.5.377
  6. K-water (1994). Development of Measurement Facilities for Stream Discharge (Development of a Microwave Surface Velocity Meter and Supersonic Correlation Current Meter). WRRI-WR-94-1.
  7. K-water (2008). Development of All-time Discharge Measuring System Using Microwave Water Surface Current Meter(2nd yr). KIWE-HRC-08-01.
  8. K-water (2010). Improvement of Accuracy on Discharge Measurement Using Suface Velocity, KWI-WR-10-01
  9. Lee, S.H., Kim, W.G., and Kim, Y.S. (1997). "Practical Aspects of Microwave Surface Velocity Meter Applied to Measurements of Stream Discharges." J. of Korea Water Reso. Asso. Vol. 30, pp. 671-678.
  10. Lee, S.H., Lee, H.G., and Kim, W.G. (1995). "Velocity Measurement of Stream Water Surface Using Microwave." J. of Korea Water Reso. Asso. Vol. 28, pp. 183-191.
  11. Miyamura, E., Nakajima,Y., and Yoshimura, A. (2012). "Full-scale Commercialized Microwave Doppler Current Meter-Fixed Doppler Current Meter & RYUKAN." New Era of River Discharge Measurement, Vol. 3, pp. 55-60. (in Japanese)
  12. Muste, M., Xiong, Z., Bradley, A., and Kruger, A. (2000). "Large-scale particle image velocimetry-a reliable tool for physical modeling." ASCE 2000 Joint Conference on Water Resources Engineering and Water Resources Planning & Management, Minneapolis, Minnesota.
  13. Yamaguchi, T. (1992). Flood Discharge Observation System Using Radio Current Meter, Foundation of River and Basin Integrated Communications, Japan.

Cited by

  1. Development and Evaluation of Automatic Discharges Measurement Technology for Small Stream Monitoring vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.347