DOI QR코드

DOI QR Code

Molecular Diagnosis of Streptococcus pneumoniae in Middle Ear Fluids from Children with Otitis Media with Effusion

삼출성 중이염 소아의 중이액에서 폐구균의 분자적 진단

  • Byun, Sung Wan (Department of Otolaryngology-Head and Neck Surgery, Medical Research Institute, Ewha Womans University School of Medicine) ;
  • Kim, Han Wool (Department of Pediatrics, Medical Research Institute, Ewha Womans University School of Medicine) ;
  • Yoon, Seo Hee (Department of Pediatrics, Medical Research Institute, Ewha Womans University School of Medicine) ;
  • Park, In Ho (Center for Vaccine Evaluation and Study, Medical Research Institute, Ewha Womans University School of Medicine) ;
  • Kim, Kyung-Hyo (Department of Pediatrics, Medical Research Institute, Ewha Womans University School of Medicine)
  • 변성완 (이화여자대학교 의학전문대학원 이비인후과학교실) ;
  • 김한울 (이화여자대학교 의학전문대학원 소아과학교실) ;
  • 윤서희 (이화여자대학교 의학전문대학원 소아과학교실) ;
  • 박인호 (이화여자대학교 의학전문대학원 의과학연구소 백신효능연구센터) ;
  • 김경효 (이화여자대학교 의학전문대학원 소아과학교실)
  • Received : 2015.03.19
  • Accepted : 2015.07.01
  • Published : 2015.08.25

Abstract

Purpose: The long-term administration of antibiotics interferes with bacterial culture in the middle ear fluids (MEFs) of young children with otitis media with effusion (OME). The purpose of this study is to determine whether molecular diagnostics can be used for rapid and direct detection of the bacterial pathogen in culture-negative MEFs. Methods: The specificity and sensitivity of both polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) to the lytA gene of Streptococcus pneumoniae were comparatively tested and then applied for pneumococcal detection in the clinical MEFs. Results: The detection limit of the PCR assay was approximately $10^4$ colony forming units (CFU), whereas that of LAMP was less than 10 CFU for the detection of S. pneumoniae. Both PCR and LAMP did not amplify nucleic acid at over $10^6$ CFU of H. influenzae or M. catarrhalis, both of which were irrelevant bacterial species. Of 22 culture-negative MEFs from children with OME, LAMP positivity was found in twelve MEFs (54.5%, 12/22), only three of which were PCR-positive (25%, 3/12). Our results showed that the ability of LAMP to detect pneumococcal DNA is over four times higher than that of PCR (P<0.01). Conclusions: As a high-resolution tool able to detect nucleic acid levels equivalent to <10 CFU of S. pneumoniae in MEFs without any cross-reaction with other pathogens, lytA -specific LAMP may be applied for diagnosing pneumococcus infection in OME as well as evaluating the impact of a pneumococcal conjugate vaccine against OME.

목적: 장기간의 항생제 치료는 중이염 어린이 환자의 중이액으로부터 원인균이 배양되는 것을 방해한다. 본 연구는 배양 음성 중이액으로부터 분자적 진단에 의한 신속한 균 검출 가능성 여부를 확인하고자 하였다. 방법: 폐구균 lytA 유전자를 표적으로 하는 PCR과 LAMP로 민감도와 특이도를 비교 결정하고, 임상중이액에서의 폐구균 검출에 적용하였다. 결과: PCR 기법에 의한 폐구균 검출 최소한계는 약 $10^4$ 집락형성단위(CFU)이고, LAMP의 검출 최소한계는 10 CFU에서 결정되었다. 한편 두 가지 검사법 모두 Haemophilus influenzae 와 Moraxella catarrhalis 에 대해 $10^6$ CFU 이상에서도 DNA를 증폭하지 않았다. 22개의 배양음성 중이액 중에서 12개 검체가 LAMP-양성(54.5%, 12/22)으로 확인되었고, 이들 12개 LAMP-양성 검체 중, 3개의 검체만이 PCR-양성으로 확인되었다(25%, 3/12). 본 연구의 결과는 LAMP 기법의 폐구균 검출 해상력이 PCR 기법에 비교하여 4배 이상 높음을 보여준다(P<0.01). 결론: lytA -특이 LAMP 기법은, 중이액 내의 타 병원균과는 교차반응 없이 10 CFU 폐구균의 DNA를 검출할 수 있는 고해상 기술로서, 중이액 폐구균 검출 및 폐구균 백신의 보급에 따른 백신 효과 평가에 적용이 기대된다.

Keywords

References

  1. Howie VM, Ploussard JH, Lester RL, Jr. Otitis media: a clinical and bacteriological correlation. Pediatrics 1970;45:29-35.
  2. Luotonen J, Herva E, Karma P, Timonen M, Leinonen M, Makela PH. The bacteriology of acute otitis media in children with special reference to Streptococcus pneumoniae as studied by bacteriological and antigen detection methods. Scand J Infect Dis 1981;13:177-83. https://doi.org/10.3109/inf.1981.13.issue-3.04
  3. Bluestone CD, Stephenson JS, Martin LM. Ten-year review of otitis media pathogens. Pediatr Infect Dis J 1992;11:S7-11. https://doi.org/10.1097/00006454-199208001-00002
  4. Kilpi T, Herva E, Kaijalainen T, Syrjanen R, Takala AK. Bacteriology of acute otitis media in a cohort of Finnish children followed for the first two years of life. Pediatr Infect Dis J 2001;20:654-62. https://doi.org/10.1097/00006454-200107000-00004
  5. Qvarnberg Y, Holopainen E, Palva T. Aspiration cytology in acute otitis media. Acta Otolaryngol 1984;97:443-9. https://doi.org/10.3109/00016488409132919
  6. Rosenfeld RM. An evidence-based approach to treating otitis media. Pediatr Clin North Am 1996;43:1165-81. https://doi.org/10.1016/S0031-3955(05)70512-5
  7. Rosenfeld RM, Schwartz SR, Pynnonen MA, Tunkel DE, Hussey HM, Fichera JS, et al. Clinical practice guideline: Tympanostomy tubes in children. Otolaryngol Head Neck Surg 2013;149:S1-35.
  8. Saleem M, Naz M, Waris A, Muneer B, Khurshid R. Screening of pneumococcal pneumonia by amplification of pneumolysin gene in children visiting hospitals in lahore, pakistan. Iranian J Pediatr 2012;22:524-30.
  9. McAvin JC, Reilly PA, Roudabush RM, Barnes WJ, Salmen A, Jackson GW, et al. Sensitive and specific method for rapid identification of Streptococcus pneumoniae using real-time fluorescence PCR. J Clin Microbiol 2001;39:3446-51. https://doi.org/10.1128/JCM.39.10.3446-3451.2001
  10. Morrison KE, Lake D, Crook J, Carlone GM, Ades E, Facklam R, et al. Confirmation of pspA in all 90 serotypes of Streptococ cus pneumoniae by PCR and potential of this assay for identification and diagnosis. J Clin Microbiol 2000;38:434-7.
  11. Rintamaki S, Saukkoriipi A, Salo P, Takala A, Leinonen M. Detection of Streptococcus pneumoniae DNA by using polymerase chain reaction and microwell hybridization with Europium-labelled probes. J Clin Microbiol 2002;50:313-8.
  12. Kim DW, Kilgore PE, Kim EJ, Kim SA, Anh DD, Dong BQ, et al. The enhanced pneumococcal LAMP assay: a clinical tool for the diagnosis of meningitis due to Streptococcus pneumoniae . PLoS One. 2012;7:e42954. https://doi.org/10.1371/journal.pone.0042954
  13. Hoppe JE, Grieshaber, Höfler W. Colonization of Nigerian neonates with group B streptococci and its rapid detection. Infection 1986;14:74-8. https://doi.org/10.1007/BF01644447
  14. Prattes J, Koidl C, Eigl S, Krause R, Hoenigl M. Bronchoalveolar lavage fluid sample pretreatment with Sputasol (R) significantly reduces galactomannan levels. J Infect 2015;70:541-3. https://doi.org/10.1016/j.jinf.2014.11.005
  15. Nagai K, Shibasaki Y, Hasegawa K, Davies TA, Jacobs MR, Ubukata K, et al. Evaluation of PCR primers to screen for Streptococcus pneumoniae isolates and beta-lactam resistance, and to detect common macrolide resistance determinants. J Antimicrob Chemother 2001;48:915-8. https://doi.org/10.1093/jac/48.6.915
  16. Black S, Shinefield HR, Fireman B, Lewis E, Ray P, Hansen JR, et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr Infect Dis J 2000;19:187-95. https://doi.org/10.1097/00006454-200003000-00003
  17. Eskola J, Kilpi T, Palmu A, Jokinen J, Haapakoski J, Herva E, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Eng J Med 2001;344:403-9. https://doi.org/10.1056/NEJM200102083440602
  18. Berman S. Otitis media in children. N Eng J Med 1995;332:1560-5. https://doi.org/10.1056/NEJM199506083322307
  19. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 2001;293:498-506. https://doi.org/10.1126/science.1061217
  20. Park IH, Kim KH, Andrade AL, Briles DE, McDaniel LS, Nahm MH. Nontypeable pneumococci can be divided into multiple cps types, including one type expressing the novel gene pspK. mBio 2012;3:e00035-12.
  21. Approved lists of bacterial names. Med J Aust 1980;2:3-4.
  22. Ankerst J, Christensen P, Kjellen L, Kronvall G. A rountine diagnostic test for IgA and IgM antibodies to rubella virus: absorption of IgG with Staphylococcus aureus. J Infect Dis 1974;130:268-73. https://doi.org/10.1093/infdis/130.3.268
  23. Crisel RM, Baker RS, Dorman DE. Capsular polymer of Haemophilus influenzae , type b. I. Structural characterization of the capsular polymer of strain Eagan. J Biol Chem 1975;250:4926-30.