DOI QR코드

DOI QR Code

스마트 환경에서 행위 인식을 위한 센서 선정 기법

Sensor Selection Strategies for Activity Recognition in a Smart Environment

  • 구성도 (아주대학교 소프트웨어특성화학과) ;
  • 손경아 (아주대학교 정보컴퓨터공학과)
  • 투고 : 2015.01.08
  • 심사 : 2015.05.06
  • 발행 : 2015.08.15

초록

스마트 폰의 출현에 이어 최근 웨어러블 기기와 IoT 개념의 등장으로 언제 어디서든 여러 다양한 객체들 간의 상호작용이 가능하게 되었다. 그 중 홈 네트워크를 이용한 스마트 홈 서비스를 위해서는 수많은 센서들이 필요하다. 이러한 스마트 환경에서의 센서 데이터를 이용하여 거주자의 행위를 인식하는 연구가 활발히 진행되고 있다. 각종 센서 데이터 마이닝 기법을 통한 행위 인식 및 패턴 분석을 위해 많은 센서가 사용되지만, IoT 스마트 홈 서비스를 위해 수많은 센서들이 설치되어야 한다면 비용의 문제와 에너지 소모의 문제를 야기할 것이다. 본 논문에서는 스마트 환경에서 주성분 분석과 클러스터링 기법을 활용하여 적은 수의 센서를 선정하는 방식을 제안하며, 이에 따른 거주자 행위 인식률의 개선 효과를 보인다.

The recent emergence of smart phones, wearable devices, and even the IoT concept made it possible for various objects to interact one another anytime and anywhere. Among many of such smart services, a smart home service typically requires a large number of sensors to recognize the residents' activities. For this reason, the ideas on activity recognition using the data obtained from those sensors are actively discussed and studied these days. Furthermore, plenty of sensors are installed in order to recognize activities and analyze their patterns via data mining techniques. However, if many of these sensors should be installed for IoT smart home service, it raises the issue of cost and energy consumption. In this paper, we proposed a new method for reducing the number of sensors for activity recognition in a smart environment, which utilizes the principal component analysis and clustering techniques, and also show the effect of improvement in terms of the activity recognition by the proposed method.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Seong-Kon Lee, Jong-Wook Kim, Yong-Jin Yoon, "A Study on World Energy Outlook and the Optimal Alternatives for Energy Technology Development," Journal of Energy Engineering, Vol. 15, No. 3, pp. 174-180, 2006.
  2. F. Diane J. Cook, "Activity Discovery and Activity Recognition: A New Partnership," Cybernetics, IEEE, Vol. 43, Issue 3, pp. 820-828, 2013. https://doi.org/10.1109/TSMCB.2012.2216873
  3. P. Rashidi, D. J. Cook, L. B. Holder, "Discovering Activities to Recognize and Track in a Smart Environment," Knowledge and Data Engineering, IEEE, Vol. 23, Issue 4, pp. 527-539, 2011. https://doi.org/10.1109/TKDE.2010.148
  4. Yongkoo Han, Kisung Park, Young-Koo Lee, "Graph Model based Activity Pattern Mining for Healthcare," Journal of KIISE: Database, Vol. 38, No. 5, pp. 270-279, 2011.
  5. Diane J. Cook, Lawrence B. Holder, "Sensor selection to support practical use of health-monitoring smart environments," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 1, Issue 4, pp. 339-351, 2011. https://doi.org/10.1002/widm.20
  6. Hu Min, Wu Fangfang, "Filter-Wrapper Hybrid Method on Feature Selection," Intelligent Systems (GCIS), 2010 Second WRI Global Congress on,IEEE, Vol. 3, pp. 98-101, 2010.
  7. P. Rashidi and D. Cook, "Keeping the resident in the loop: Adapting the smart home to the user," IEEE, 2010.
  8. D. J. Cook, "Learning Setting-Generalized Activity Models for Smart Spaces," IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, Vol. 39, No. 5, pp. 949-959, 2009. https://doi.org/10.1109/TSMCA.2009.2025137
  9. M.E. Tipping, C.M. Bishop, "Probabilistic principal component analysis," Royal Statistical Society, Part 3, pp. 611-622, 1999.
  10. Hyung-Jin Noh, "Principal Component Analysis & Factor Analysis," Hanol, pp. 21-23, 2014.
  11. D. Gu, "Distributed EM Algorithm for Gaussian Mixtures in Sensor Networks," IEEE, Vol. 19, Issue 7, pp. 1154-1166, 2008. https://doi.org/10.1109/TNN.2008.915110
  12. Narendra Sharma, Aman Bajpai, Mr. Ratnesh Litoriya, "Comparison the various clustering algorithms of weka tools," International Journal of Emerging Technology and Advanced Engineering, Vol. 2, Issue 5, 2012.
  13. A. Fleury, M. Vacher, N. Noury, "SVM-Based Multimodal Classification of Activities of Daily Living in Health Smart Homes: Sensors, Algorithms, and First Experimental Results," IEEE, Vol. 14, Issue 2, pp. 274-283, 2010. https://doi.org/10.1109/TITB.2009.2037317
  14. Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, "A Practical Guide to Support Vector Classification," National Taiwan University, 2010.