DOI QR코드

DOI QR Code

Genetic Analysis of Milk Yield in First-Lactation Holstein Friesian in Ethiopia: A Lactation Average vs Random Regression Test-Day Model Analysis

  • Meseret, S. (Department of Animal Production Studies, CVMA, Addis Ababa University) ;
  • Tamir, B. (Department of Animal Production Studies, CVMA, Addis Ababa University) ;
  • Gebreyohannes, G. (Ministry of Agriculture) ;
  • Lidauer, M. (Biometrical Genetics, Natural Resources Institute (LUKE)) ;
  • Negussie, E. (Biometrical Genetics, Natural Resources Institute (LUKE))
  • Received : 2015.02.27
  • Accepted : 2015.05.18
  • Published : 2015.09.01

Abstract

The development of effective genetic evaluations and selection of sires requires accurate estimates of genetic parameters for all economically important traits in the breeding goal. The main objective of this study was to assess the relative performance of the traditional lactation average model (LAM) against the random regression test-day model (RRM) in the estimation of genetic parameters and prediction of breeding values for Holstein Friesian herds in Ethiopia. The data used consisted of 6,500 test-day (TD) records from 800 first-lactation Holstein Friesian cows that calved between 1997 and 2013. Co-variance components were estimated using the average information restricted maximum likelihood method under single trait animal model. The estimate of heritability for first-lactation milk yield was 0.30 from LAM whilst estimates from the RRM model ranged from 0.17 to 0.29 for the different stages of lactation. Genetic correlations between different TDs in first-lactation Holstein Friesian ranged from 0.37 to 0.99. The observed genetic correlation was less than unity between milk yields at different TDs, which indicated that the assumption of LAM may not be optimal for accurate evaluation of the genetic merit of animals. A close look at estimated breeding values from both models showed that RRM had higher standard deviation compared to LAM indicating that the TD model makes efficient utilization of TD information. Correlations of breeding values between models ranged from 0.90 to 0.96 for different group of sires and cows and marked re-rankings were observed in top sires and cows in moving from the traditional LAM to RRM evaluations.

Keywords

References

  1. Abdullahpour, R., M. M. Shahrbabak, A. Nejati-Javaremi, and R. V. Torshizi. 2010. Genetic analysis of dairy milk, fat and protein percentage of Iranian first lactation Holstein cattle. World Appl. Sci. J.10:1042-1046.
  2. Abdullahpour, R., M. M. Shahrbabak, A. Nejati-Javaremi, R. V. Torshizi, and R. Mrode. 2013. Genetic analysis of milk yield, fat and protein content in Holstein dairy cows in Iran: Legendre polynomials random regression model applied. Archiv. Tierzucht. 56:497-508.
  3. Akbas, Y., I. Kaya, C. Uzmay, C. Yakupoglu, and Y. Unver. 1999. Breeding Value Estimation of Dairy Cattle Using Test Day Milk Yields. Turkish agriculture and natural scientists, German-Turkish Agricultural Research. 6th Symposium on 27 September - October 2, 1999 at the University of Giessen, Giessen, Germany.
  4. Ayalew, W. 2014. Estimation of Genetic Parameters for Productive and Reproductive Traits of Holstein Friesian Dairy Cattle Fitting Multivariate Animal Model at Holetta Bull Dam Farm, Ethiopia. M.Sc. Thesis. Jimma University, Jimma Ethiopia.
  5. Bilal, G. and M. S. Khan. 2009. Use of test-day milk yield for genetic evaluation in dairy cattle: A review. Pakistan Vet. J. 29: 35-41.
  6. Cobuci, J. A., C. N. Costa, J. B. Neto, and A. F.de Freitas. 2011. Genetic parameters for milk production by using random regression models with different alternatives of fixed regression modeling. R. Bras. Zootec. 40:557-567. https://doi.org/10.1590/S1516-35982011000300013
  7. Cobuci, J. A., R. F. Euclydes, P. S. Lopes, C. N. Costa, R. A. Torres, and C. S. Pereira. 2005. Estimation of genetic parameters for test-day milk yield in Holstein cows using a random regression model. Genet. Mol. Biol. 28:75-83. https://doi.org/10.1590/S1415-47572005000100013
  8. deLeeuw, P. N., A. Omore, S. Staal, and W. Thorpe. 1999. Dairy production systems in the tropics. In: Smallholder Dairying in the Tropics (Eds. L. Falvey and C. Chantalakhana). ILRI (International Livestock Research Institute), Nairobi, Kenya. pp. 19-44.
  9. Druet, T., F. Jaffrezic, D. Boichard, and V. Ducrocq. 2003. Modeling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows. J. Dairy Sci. 86:2480-2490. https://doi.org/10.3168/jds.S0022-0302(03)73842-9
  10. El Faro, L., V. L. Cardoso, and L. G. de Albuquerque. 2008. Variance component estimates for test-day milk yield applying random regression models. Genet. Mol. Biol. 31:665-673. https://doi.org/10.1590/S1415-47572008000400011
  11. Gebreyohannes, G. 2013. Genetic Evaluation for Lactation Pattern and Milk Production Traits of Dairy Cattle in a Multi Breed Population in Ethiopia. PhD Thesis, Kasetsart University, Bangkok, Thailand. 146 Pages.
  12. Goshu, G., H. Singh, K. J. Petersson, and N. Lundeheim. 2014. Heritability and correlation among first lactation traits in Holstein Friesian cows at Holeta Bull Dam Station, Ethiopia. Int. J. Livest. Prod. 5:47-53. https://doi.org/10.5897/IJLP2013.0165
  13. Hammoud, M. H. and M. M. I. Salem. 2013. The genetic evaluation of some first lactation traits of Holstein cows in Egypt. Alex. J. Agric. Res. 58:1-8.
  14. Kefena, E., W. Zewdie, D. Tadelle, and H. Aynalem. 2011. Genetic and environmental trends in the long term dairy cattle genetic improvement programmes in the central tropical highlands of Ethiopia. J. Cell Anim. Biol. 5:96-104.
  15. Kim, B., D. Lee, D. Lee, J. Jeon, and J. Lee. 2009. Estimation of genetic parameters for milk production traits using a random regression test-day model in Holstein cows in Korea. Asian Australas. J. Anim. Sci. 22:923-930. https://doi.org/10.5713/ajas.2009.80110
  16. Lidauer, M., E. A. Mantysaari, and I. Stranden. 2003. Comparison of test-day models for genetic evaluation of production traits in dairy cattle. Livest. Prod. Sci. 79:73-86. https://doi.org/10.1016/S0301-6226(02)00142-2
  17. Madsen, P. and J. Jensen. 2013. DMU A Package for Analysing Multivariate Mixed Models. Version 6, release 5.2. Center for Quantitative Genetics and Genomics Dept. of Molecular Biology and Genetics, University of Aarhus Research Centre Foulum Box 50, 8830 Tjele Denmark.
  18. Meyer, K. 2003. Random regression models for analysis of longitudinal data in animal breeding. In: Proceedings 54th Session of the International Statistical Institute, 2003, Berlin, Germany.
  19. Negussie, E., I. Stranden, and E. A. Mantysaari. 2008. Genetic association of clinical mastitis with test-day somatic cell score and milk yield during first lactation of FinnishAyrshire cows. J. Dairy Sci. 91:1189-1197. https://doi.org/10.3168/jds.2007-0510
  20. Negussie, E., M. Koivula, E. A. Mantysaari, and M. Lidauer. 2006. Genetic evaluation of somatic cell score in dairy cattle considering first and later lactations as two different but correlated traits. J. Anim. Breed. Genet. 123:224-238. https://doi.org/10.1111/j.1439-0388.2006.00594.x
  21. Odegard, J., J. Jensen, G. Klemetsdal, P. Madsen, and B. Heringstad. 2003. Genetic analysis of somatic cell score in Norwegian cattle using random regression test-day models. J. Dairy Sci. 86:4103-4114. https://doi.org/10.3168/jds.S0022-0302(03)74024-7
  22. Santos. D. J. A., M. G. Peixoto, R. R. Borquis, R. S. Verneque, J. C. Panetto, and H. Tonhati. 2013. Comparison of random regression models to estimate genetic parameters for milk production in Guzerat (Bosindicus) cows. Genet. Mol. Biol. 12: 143-153.
  23. Sargent, F. D., V. H. Lytton, and O. G. Wall. 1968. Test interval method of calculating dairy herd improvement association records. J. Dairy Sci. 51:170-179. https://doi.org/10.3168/jds.S0022-0302(68)86943-7
  24. Schaeffer, L. R., J. Jamrozik, G. J. Kistemaker, and J. Van Doormaal. 2000. Experience with a test-day model. J. Dairy Sci. 83:1135-44. https://doi.org/10.3168/jds.S0022-0302(00)74979-4
  25. Shadparvar, A. A. and M. S. Yazdanshenas. 2005. Genetic parameters of milk yield and milk fat percentage test day records of Iranian Holstein cows. Asian Australas. J. Anim. Sci. 18:1231-1236. https://doi.org/10.5713/ajas.2005.1231
  26. Strabel, T. and T. Szwczkowski. 1997. Additive genetic and permanent environmental variance components for test day milk traits in Black-White cattle. Livest. Prod. Sci. 48:91-98. https://doi.org/10.1016/S0301-6226(97)00005-5
  27. Stranden, I. and M. Lidauer. 1999. Solving large mixed linear models using preconditioned conjugate gradient iteration. J. Dairy Sci. 82:2779-2787. https://doi.org/10.3168/jds.S0022-0302(99)75535-9
  28. Wiggans, G. R. and M. E. Goddard. 1996. A computationally feasible test day model with separate first and later lactation genetic effects. Proc. 56th New Zealand Soc. Anim. Prod. Annu.Mtg., Hamilton, New Zealand. pp. 19-21.
  29. Wilmink, J. B. M. 1987. Adjustment of test-day milk, fat and protein yield for age, season and stage of lactation. Livest. Prod. Sci. 16:335-348. https://doi.org/10.1016/0301-6226(87)90003-0

Cited by

  1. Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions pp.00220302, 2019, https://doi.org/10.3168/jds.2018-15329