DOI QR코드

DOI QR Code

Effect of the Ratio of Non-fibrous Carbohydrates to Neutral Detergent Fiber and Protein Structure on Intake, Digestibility, Rumen Fermentation, and Nitrogen Metabolism in Lambs

  • Ma, T. (Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture) ;
  • Tu, Y. (Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture) ;
  • Zhang, N.F. (Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture) ;
  • Deng, K.D. (College of Animal Science, Jinling Institute of Technology) ;
  • Diao, Q.Y. (Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture)
  • Received : 2015.01.08
  • Accepted : 2015.04.20
  • Published : 2015.10.01

Abstract

This study aimed to investigate the effect of the ratio of non-fibrous carbohydrates to neutral detergent fibre (NFC/NDF) and undegraded dietary protein (UDP) on rumen fermentation and nitrogen metabolism in lambs. Four $Dorper{\times}thin-tailed$ Han crossbred lambs, averaging $62.3{\pm}1.9kg$ of body weight and 10 mo of age, were randomly assigned to four dietary treatments of combinations of two levels of NFC/NDF (1.0 and 1.7) and two levels of UDP (35% and 50% of crude protein [CP]). Duodenal nutrient flows were measured with dual markers of Yb and Co, and microbial N (MN) synthesis was estimated using $^{15}N$. High UDP decreased organic matter (OM) intake (p = 0.002) and CP intake (p = 0.005). Ruminal pH (p<0.001), ammonia nitrogen ($NH_3-N$; p = 0.008), and total volatile fatty acids (p<0.001) were affected by dietary NFC/NDF. The ruminal concentration of $NH_3-N$ was also affected by UDP (p<0.001). The duodenal flow of total MN (p = 0.007) was greater for lambs fed the high NFC/NDF diet. The amount of metabolisable N increased with increasing dietary NFC:NDF (p = 0.02) or UDP (p = 0.04). In conclusion, the diets with high NFC/NDF (1.7) and UDP (50% of CP) improved metabolisable N supply to lambs.

Keywords

References

  1. Agle, M., A. N. Hristov, S. Zaman, C. Schneider, P. M. Ndegwa, and V. K. Vaddella. 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. J. Dairy Sci. 93:4211-4222. https://doi.org/10.3168/jds.2009-2977
  2. Ahvenjarvi, S., A. Vanhatalo, and P. Huhtanen. 2002. Supplementing barley or rapeseed meal to dairy cows fed grass-red clover silage: I. Rumen degradability and microbial flow. J. Anim. Sci. 80:2176-2187.
  3. Allen, M. S. 2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 83:1598-1624. https://doi.org/10.3168/jds.S0022-0302(00)75030-2
  4. AOAC. 1990. Official Methods of Analysis. 15th edn. Assoc. Off. Agric. Chem., Washington, DC, USA.
  5. Asman, W. A. H., M. A. Sutton, and J. K. Schjorring. 1998. Ammonia: Emission, atmospheric transport and deposition. New Phytol. 139:27-48. https://doi.org/10.1046/j.1469-8137.1998.00180.x
  6. Bailey, R. W. and J. C. MacRae. 1970. The hydrolysis by rumen and caecal microbial enzymes of hemicellulose in plant and digesta particles. J. Agric. Sci. 75:321-326. https://doi.org/10.1017/S0021859600017019
  7. Bartram, C. G. 1987. The Endogenous Protein Content of Ruminant Proximal Duodenal Digesta. Ph.D. Thesis, University of Nottingham, Nottingham, UK.
  8. Cantalapiedra-Hijar, G., D. R. Yanez-Ruiz, A. I. Martin-Garcia, and E. Molina-Alcaide. 2009. Effects of forage: Concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats. J. Anim. Sci. 87:622-631. https://doi.org/10.2527/jas.2008-1142
  9. Carro, M. D., C. Valdes, M. J. Ranilla, J. S. Gonzalez. 2000. Effect of forage to concentrate ratio in the diet on ruminal fermentation and digesta flow kinetics in sheep offered food at a fixed and restricted level of intake. Anim. Sci. 70:127-134. https://doi.org/10.1017/S1357729800051663
  10. Cecava, M. J., N. R. Merchen, L. L. Berger, R. I. Mackie, and G. C. Fahey. 1991. Effects of dietary energy level and protein source on nutrient digestion and ruminal nitrogen metabolism in steers. J. Anim. Sci. 69:2230-2243. https://doi.org/10.2527/1991.6952230x
  11. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
  12. Clark, J. H., T. H. Klusmeyer, and M. R. Cameron. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 75:2304-2323. https://doi.org/10.3168/jds.S0022-0302(92)77992-2
  13. Egan, A. R. and R. J. Moir. 1965. Nutritional status and intake regulation in sheep: I. Effects of duodenally infused single doses of casein, urea, and propionate upon voluntary intake of a low-protein roughage by sheep. Crop Pasture Sci. 16:437-449. https://doi.org/10.1071/AR9650437
  14. Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analysis: (Apparatus, reagents, procedures, and some applications). In: Agricultural Handbook no. 379. Agricultural Research Service, US Department of Agriculture, Washington, DC, USA.
  15. Hall, M. B. 2000. Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. University of Florida (Bulletin 339), Gainesville, FL, USA. pp. A-25.
  16. Hoekstra, N. J., R. P. O. Schulte, P. C. Struik, and E. A. Lantinga. 2007. Pathways to improving the N efficiency of grazing bovines. Eur. J. Agron. 26:363-374. https://doi.org/10.1016/j.eja.2006.12.002
  17. Hristov, A. N., J. K. Ropp, K. L. Grandeen, S. Abedi, R. P. Etter, A. Melgar, and A. E. Foley. 2005. Effect of carbohydrate source on ammonia utilization in lactating dairy cows. J. Anim. Sci. 83:408-421. https://doi.org/10.2527/2005.832408x
  18. Kiran, D. and T. Mutsvangwa. 2007. Effects of barley grain processing and dietary ruminally degradable protein on urea nitrogen recycling and nitrogen metabolism in growing lambs. J. Anim. Sci. 85:3391-3399. https://doi.org/10.2527/jas.2007-0081
  19. Lord, E. I. 1996. Pilot nitrate sensitive area scheme: Report of the first 4 years. In: Diffuse Pollution and Agriculture (Eds. Petchey, A. M., B. J. D'Arcy, and C. A. Frost). The Scottish Agricultural College, Aberdeen, UK. pp. 64-72.
  20. Ma, T., K. D. Deng, C. G. Jiang, Y. Tu, N. F. Zhang, J. Liu, Y. G. Zhao, and Q. Y. Diao. 2013. The relationship between microbial N synthesis and urinary excretion of purine derivatives in Dorper $\times$ thin-tailed Han crossbred sheep. Small Rumin. Res. 112:49-55. https://doi.org/10.1016/j.smallrumres.2012.09.003
  21. Ma, T., K. D. Deng, Y. Tu, N. F. Zhang, C. G. Jiang, J. Liu, Y. G. Zhao, and Q. Y. Diao. 2014. Effect of dietary forage-toconcentrate ratios on urinary excretion of purine derivatives and microbial nitrogen yields in the rumen of Dorper crossbred sheep. Livest. Sci. 160:37-44. https://doi.org/10.1016/j.livsci.2013.11.013
  22. Mould, F. L. and E. R. Orskov. 1983. Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate. Anim. Feed Sci. Technol. 10:1-14. https://doi.org/10.1016/0377-8401(83)90002-0
  23. Mould, F. L., E. R. Orskov, and S. O. Mann. 1983. Associative effects of mixed feeds: I. Effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 10:15-30. https://doi.org/10.1016/0377-8401(83)90003-2
  24. National Research Council. 2007. Nutrient requirements of small ruminants: Sheep, goats, cervids, and new world camelids. National Academies Press, Washington, DC, USA.
  25. Pina, D. S., S. C. Valadares Filho, L. O. Tedeschi, A. M. Barbosa, and R. F. D. Valadares. 2009. Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers. J. Anim. Sci. 87:1058-1067. https://doi.org/10.2527/jas.2008-1069
  26. Ramos, S., M. L. Tejido, M. E. Martinez, M. J. Ranilla, and M. D. Carro. 2009. Microbial protein synthesis, ruminal digestion, microbial populations, and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage. J. Anim. Sci. 87:2924-2934. https://doi.org/10.2527/jas.2009-1938
  27. Reynal, S. M. and G. A. Broderick. 2005. Effect of dietary level of rumen-degraded protein on production and nitrogen metabolism in lactating dairy cows. J. Dairy Sci. 88:4045-4064. https://doi.org/10.3168/jds.S0022-0302(05)73090-3
  28. Stern, M. D., G. A. Varga, J. H. Clark, J. L. Firkins, J. T. Huber, and D. L. Palmquist. 1994. Evaluation of chemical and physical properties of feeds that affect protein metabolism in the rumen. J. Dairy Sci. 77:2762-2786. https://doi.org/10.3168/jds.S0022-0302(94)77219-2
  29. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  30. Volden, H. and O. M. Harstad. 1995. Effect of rumen incubation on the true indigestibility of feed protein in the digestive tract determined by nylon bag techniques. Acta Agric. Scand. A-AN. 45:106-115.

Cited by

  1. Cassava dreg as replacement of corn in goat kid diets pp.1573-7438, 2018, https://doi.org/10.1007/s11250-017-1432-3
  2. Effects of the dietary nonfiber carbohydrate content on lactation performance, rumen fermentation, and nitrogen utilization in mid-lactation dairy cows receiving corn stover vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0239-z
  3. Influence of dietary supplementation with Bacillus licheniformis and Saccharomyces cerevisiae as alternatives to monensin on growth performance, antioxidant, immunity, ruminal fermentation and microbial diversity of fattening lambs vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-35081-4
  4. Effects of Feeding High- and Low- Forage Diets Containing Different Forage Sources on Rumen Fermentation Characteristics and Blood Parameters in Non-Pregnant Dry Holstein Cows vol.37, pp.1, 2015, https://doi.org/10.5333/kgfs.2017.37.1.1
  5. Effects of Dietary-SCFA on Microbial Protein Synthesis and Urinal Urea-N Excretion Are Related to Microbiota Diversity in Rumen vol.10, pp.None, 2015, https://doi.org/10.3389/fphys.2019.01079
  6. Lactation performance and rumen fermentation in dairy cows fed a diet with alfalfa hay replaced by corn stover and supplemented with molasses vol.32, pp.8, 2015, https://doi.org/10.5713/ajas.18.0735
  7. Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-53279-y
  8. Ruminal Microbiota and Fermentation in Response to Dietary Protein and Energy Levels in Weaned Lambs vol.10, pp.1, 2015, https://doi.org/10.3390/ani10010109
  9. Fermentation profile and nutritional quality of silages composed of cactus pear and maniçoba for goat feeding vol.158, pp.4, 2015, https://doi.org/10.1017/s0021859620000581
  10. Intake, nutrient digestibility, nitrogen balance, and microbial protein synthesis in sheep fed spineless-cactus silage and fresh spineless cactus vol.194, pp.None, 2015, https://doi.org/10.1016/j.smallrumres.2020.106293
  11. The application of total mixed ration with iso protein and different TDN levels on the productivity of Simmental crossbred cattle vol.803, pp.1, 2021, https://doi.org/10.1088/1755-1315/803/1/012012
  12. Enhancing the Quality of Total Mixed Ration Containing Cottonseed or Rapeseed Meal by Optimization of Fermentation Conditions vol.7, pp.4, 2015, https://doi.org/10.3390/fermentation7040234