DOI QR코드

DOI QR Code

A general tangent operator applied to concrete using a multi-surface plasticity model

  • Silva, Ana Beatriz C.G. (Laboratory of Structures and Materials, Civil Engineering Programme, Federal University of Rio de Janeiro, Centro de Tecnologia) ;
  • Telles, Jose Claudio F. (Laboratory of Structures and Materials, Civil Engineering Programme, Federal University of Rio de Janeiro, Centro de Tecnologia) ;
  • Fairbairn, Eduardo M.R. (Laboratory of Structures and Materials, Civil Engineering Programme, Federal University of Rio de Janeiro, Centro de Tecnologia) ;
  • Ribeiro, Fernando Luiz B. (Laboratory of Structures and Materials, Civil Engineering Programme, Federal University of Rio de Janeiro, Centro de Tecnologia)
  • 투고 : 2014.11.01
  • 심사 : 2015.08.04
  • 발행 : 2015.08.25

초록

The present paper aims at developing a method to accommodate multi-surface concrete plasticity from the point of view of a consistency concept applied to general tangent operators. The idea is based on a Taylor series expansion of the actual effective stress at the stress point corresponding to the previous accumulated true stresses plus the current increment values, initially taken to be elastic. The proposed algorithm can be generalized for any multi-surface criteria combination and has been tested here for typical cement-based materials. A few examples of application are presented to demonstrate the effectiveness of the multi-surface technique as used to a combination of Rankine and Drucker-Prager yield criteria.

키워드

참고문헌

  1. Benkemoun, N., Ibrahimbegovic, A. and Colliat, J.B. (2012), "Anisotropic constitutive model of plasticity capable of accounting for details of meso-structure of two-phase composite material", Comput. Struct., 90-91, 153-162. https://doi.org/10.1016/j.compstruc.2011.09.003
  2. Cervenka, J. and Papanikolaou, U.K. (2008), "Three dimensional combined fracture-plastic material model for concrete", Int. J. Plasticity., 24(12), 2192-2220. https://doi.org/10.1016/j.ijplas.2008.01.004
  3. Crisfield, M.A. (1997), Non-Linear Finite Element Analysis of Solids and Structures. Advanced Topics, Wiley, New York, USA.
  4. Etse, G. and Willam, K. (1994), "Fracture energy formulation for inelastic behavior of plain concrete", J. Eng. Mech. - ASCE, 120(9), 1983-2011. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:9(1983)
  5. Feenstra, P.H. and De Borst, R. (1996), "A composite plasticity model for concrete", Int. J. Solids. Struct., 33(5), 707-730. https://doi.org/10.1016/0020-7683(95)00060-N
  6. Galic, M., Marovic, P. and Nikolic, Z. (2011), "Modified mohr-coulomb-rankine material model for concrete", Mater. Model. Concrete., 28(7), 853-887.
  7. Grassl, P., Lundgren, K. and Gylltoft, K. (2002), "Concrete in compression: a plasticity theory with a novel hardening law", Int. J. Solids. Struct., 39, 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0
  8. Hellmich, C., Ulm, F.J. and Mang, H.A. (1999), "Multisurface chemoplasticity. I: material model for shotcrete", J. Eng. Mech., 125(6), 692-701. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:6(692)
  9. Hofstetter, G., Simo, J.C. and Taylor, R.L. (1993), "A modified cap model: closest point solution algorithms", Comput. Struct., 46(2), 203-214. https://doi.org/10.1016/0045-7949(93)90185-G
  10. Krieg, R.D. and Krieg, D.B. (1977), "Accuracies of numerical solution methods for the elastic-perfectly plastic model", J. Press. Vess. - T. ASME, 99, 510-515. https://doi.org/10.1115/1.3454568
  11. Lackner, R., Hellmich, C. and Mang, H.A. (2002), "Constitutive modeling of cementitious materials in the framework of chemoplasticity", Int. J. Numer. Meth. Eng., 53(10), 2257-2388.
  12. Lackner, R. and Mang, H.A. (2004), "Chemoplastic material model for the simulation of early-age cracking: From the constitutive law to numerical analyses of massive concrete structures", Cement. Concrete. Compos., 26(5), 551-562. https://doi.org/10.1016/S0958-9465(03)00071-4
  13. Miers, L.S. and Telles, J.C.F. (2004), "A general tangent operator procedure for implicit elastoplastic BEM analysis", Comput. Model. Eng. Sci., 6(5), 431-439.
  14. Olesen, J.F., Ostergaard, L. and Stang, H. (2005), "Nonlinear fracture mechanics and plasticity of the split cyliner test", Mater. Struct., 39(4), 421-432. https://doi.org/10.1617/s11527-005-9018-3
  15. Peng, Q. and Chen, M.X. (2012), "An efficient return mapping algorithm for general isotropic elastoplasticity in principal space", Comput. Struct., 92-93, 173-184. https://doi.org/10.1016/j.compstruc.2011.11.006
  16. Pramono, E. and Willam, K. (1989), "Fracture energy-based plasticity formulation of plain concrete", J. Eng. Mech. - ASCE, 115(5), 183- 1204.
  17. Ribeiro, F. and Ferreira, I. (2007), "Parallel implementation of the finite element method using compressed data structures", Comput. Mech., 41(1), 31-48. https://doi.org/10.1007/s00466-007-0166-x
  18. Rocco, C., Guinea, G.V., Palnas, J. and Elices, M. (1999), "Size effect and boundary conditions in the brazilian test: theoretical analysis", Mater. Struct., 32(6), 437-444. https://doi.org/10.1007/BF02482715
  19. Simo, J.C. and Taylor, R.L. (1985), "Consistent tangent operators for rate-independent elastoplasticity", Comput. Method. Appl. M., 48(1), 101-118. https://doi.org/10.1016/0045-7825(85)90070-2
  20. Wilkins, M.L. (1963), Calculation of Elastic-Plastic Flow, University of California, Livermore, CA, USA.

피인용 문헌

  1. Modeling refractory concrete lining of fluid catalytic cracking units of oil refineries vol.25, pp.1, 2015, https://doi.org/10.12989/cac.2020.25.1.029