참고문헌
- Benkemoun, N., Ibrahimbegovic, A. and Colliat, J.B. (2012), "Anisotropic constitutive model of plasticity capable of accounting for details of meso-structure of two-phase composite material", Comput. Struct., 90-91, 153-162. https://doi.org/10.1016/j.compstruc.2011.09.003
- Cervenka, J. and Papanikolaou, U.K. (2008), "Three dimensional combined fracture-plastic material model for concrete", Int. J. Plasticity., 24(12), 2192-2220. https://doi.org/10.1016/j.ijplas.2008.01.004
- Crisfield, M.A. (1997), Non-Linear Finite Element Analysis of Solids and Structures. Advanced Topics, Wiley, New York, USA.
- Etse, G. and Willam, K. (1994), "Fracture energy formulation for inelastic behavior of plain concrete", J. Eng. Mech. - ASCE, 120(9), 1983-2011. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:9(1983)
- Feenstra, P.H. and De Borst, R. (1996), "A composite plasticity model for concrete", Int. J. Solids. Struct., 33(5), 707-730. https://doi.org/10.1016/0020-7683(95)00060-N
- Galic, M., Marovic, P. and Nikolic, Z. (2011), "Modified mohr-coulomb-rankine material model for concrete", Mater. Model. Concrete., 28(7), 853-887.
- Grassl, P., Lundgren, K. and Gylltoft, K. (2002), "Concrete in compression: a plasticity theory with a novel hardening law", Int. J. Solids. Struct., 39, 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0
- Hellmich, C., Ulm, F.J. and Mang, H.A. (1999), "Multisurface chemoplasticity. I: material model for shotcrete", J. Eng. Mech., 125(6), 692-701. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:6(692)
- Hofstetter, G., Simo, J.C. and Taylor, R.L. (1993), "A modified cap model: closest point solution algorithms", Comput. Struct., 46(2), 203-214. https://doi.org/10.1016/0045-7949(93)90185-G
- Krieg, R.D. and Krieg, D.B. (1977), "Accuracies of numerical solution methods for the elastic-perfectly plastic model", J. Press. Vess. - T. ASME, 99, 510-515. https://doi.org/10.1115/1.3454568
- Lackner, R., Hellmich, C. and Mang, H.A. (2002), "Constitutive modeling of cementitious materials in the framework of chemoplasticity", Int. J. Numer. Meth. Eng., 53(10), 2257-2388.
- Lackner, R. and Mang, H.A. (2004), "Chemoplastic material model for the simulation of early-age cracking: From the constitutive law to numerical analyses of massive concrete structures", Cement. Concrete. Compos., 26(5), 551-562. https://doi.org/10.1016/S0958-9465(03)00071-4
- Miers, L.S. and Telles, J.C.F. (2004), "A general tangent operator procedure for implicit elastoplastic BEM analysis", Comput. Model. Eng. Sci., 6(5), 431-439.
- Olesen, J.F., Ostergaard, L. and Stang, H. (2005), "Nonlinear fracture mechanics and plasticity of the split cyliner test", Mater. Struct., 39(4), 421-432. https://doi.org/10.1617/s11527-005-9018-3
- Peng, Q. and Chen, M.X. (2012), "An efficient return mapping algorithm for general isotropic elastoplasticity in principal space", Comput. Struct., 92-93, 173-184. https://doi.org/10.1016/j.compstruc.2011.11.006
- Pramono, E. and Willam, K. (1989), "Fracture energy-based plasticity formulation of plain concrete", J. Eng. Mech. - ASCE, 115(5), 183- 1204.
- Ribeiro, F. and Ferreira, I. (2007), "Parallel implementation of the finite element method using compressed data structures", Comput. Mech., 41(1), 31-48. https://doi.org/10.1007/s00466-007-0166-x
- Rocco, C., Guinea, G.V., Palnas, J. and Elices, M. (1999), "Size effect and boundary conditions in the brazilian test: theoretical analysis", Mater. Struct., 32(6), 437-444. https://doi.org/10.1007/BF02482715
- Simo, J.C. and Taylor, R.L. (1985), "Consistent tangent operators for rate-independent elastoplasticity", Comput. Method. Appl. M., 48(1), 101-118. https://doi.org/10.1016/0045-7825(85)90070-2
- Wilkins, M.L. (1963), Calculation of Elastic-Plastic Flow, University of California, Livermore, CA, USA.
피인용 문헌
- Modeling refractory concrete lining of fluid catalytic cracking units of oil refineries vol.25, pp.1, 2015, https://doi.org/10.12989/cac.2020.25.1.029