DOI QR코드

DOI QR Code

Verification of safety integrity for vital data processing device through quantitative safety analysis

정량적 안전성 분석을 통한 Vital 데이터 처리장치의 안전무결성 요구사항 검증

  • Choi, Jin-Woo (Division of Railroad System Engineering, Woosong University) ;
  • Park, Jae-Young (Division of Railroad System Engineering, Woosong University)
  • 최진우 (우송대학교 철도시스템학과) ;
  • 박재영 (우송대학교 철도시스템학과)
  • Received : 2015.06.05
  • Accepted : 2015.07.16
  • Published : 2015.07.31

Abstract

Currently, as a priority to secure the safety of the railway signalling system, verification for satisfy of the safety integrity requirements(SIR) is required to the essential elements. Safety Integrity Requirements(SIR) verification is performed based on the system safety analysis. But the probability of securing basic data for system safety analysis significantly dropped because there is no experience yet performed in the country. Therefore we are had to rely on a qualitative analysis. There are methods such as qualitative risk analysis matrix, and risk graphs. The qualitative analysis is wide, the width of the accident. However, the reliability of the result is significantly less has a disadvantage. Therefore, it should be parallel quantitative safety analysis of the system/products in order to compensate for the disadvantages of the qualitative analysis. This paper presents a quantitative safety analysis method to overcome the disadvantages of the qualitative analysis. And through a result, highly reliable Safety Integrity Requirements(SIR) verification measures proposed. Verification results, the dangerous failure incidence for vital data processing device was calculated to be $1.172279{\times}10^{-9}$. The result was verified to exceed the required safety integrity targets more.

현재 철도신호 시스템/제품(Generic Product)에 대한 안전성 확보가 최우선시 되면서 그에 대한 정량적인 척도로 안전무결성 요구사항(SIR) 만족에 대한 검증은 필수사항으로 요구되고 있다. 안전무결성 요구사항(SIR) 검증은 시스템 안전성 분석을 기반으로 수행되지만 아직까지는 국내에서 수행한 경험이 없기 때문에 시스템 안전성 분석을 위한 기본 데이터의 확보율이 현저하게 떨어졌다. 따라서 지금까지는 정성적인 시스템/제품 안전성 분석에 의존할 수밖에 없었다. 정성적 분석은 리스크 매트릭스, 리스크 그래프와 같은 방법으로 사고의 폭은 넓지만 결과의 신뢰성이 떨어진다는 단점을 가지고 있다. 따라서 정성적 분석의 단점을 보완하기 위해서는 시스템/제품에 대한 정량적인 안전성 분석이 병행되어져야 한다. 본 논문에서는 정성적 분석의 단점을 극복하기 위해 정량적인 안전성 분석방법을 제시하고 신뢰성이 향상된 안전무결성 요구사항(SIR)의 검증방안을 제시한다. 검증 결과, Vital 데이터 처리장치에 대한 위험고장 발생 빈도는 $1.172279{\times}10^{-9}$으로 산출되었으며, 이 수치는 요구된 안전무결성 목표보다 상회하는 것으로 검증되었다.

Keywords

References

  1. "IEC 61508-6 Functional safety of electrical/electronic/programmable electronic safety-related systems-Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3", p.27-94, 2010.
  2. Tieling Zhang, Wei Long, Yoshinobu Sato, "Availability of systems with self-diagnostic components-applying Markov model to IEC 61508-6", Reliability Engineering & System Safety, Volume 80, Issue2, p.133-141, May 2003. DOI: http://dx.doi.org/10.1016/S0951-8320(03)00004-8
  3. Haitao Guo, Xianhui Yang, "A simple reliability block diagram method for safety integrity verification." Reliability Engineering & System Safety, Volume 92, Issue9, p.1267-1273, September 2007. DOI: http://dx.doi.org/10.1016/j.ress.2006.08.002
  4. Israel Koren, C. Mani Krishna, "Fault-Tolerant Systems." p.11-41, MORGAN KAUFMANN PUBLISHERS, 2007.
  5. K. A. L. van Heel, "Safety life-cycle management. A flowchart presentation of the IEC 61508 overall safety life-cycle model", Quality and Reliability Engineering International, Volume 15, Issue 6, pages 493-500, November/December 1999. DOI: http://dx.doi.org/10.1002/(SICI)1099-1638(199911/12)15:6<493::AID-QRE299>3.0.CO;2-X
  6. S. Brown, "Overview of IEC 61508. Design of electrical/electronic/programmable electronic safetyrelated systems", Computing & Control Engineering Journal, Volume 11, Issue 1, pages 6-12, February 1999. DOI: http://dx.doi.org/10.1049/cce:20000101
  7. Vinod Chandra, "Reliability and safety analysis of fault tolerant and fail safe node for use in a railway signalling system", Reliability Engineering & System Safety, Volume 57, Issue 2, pages 177-183, August 1997. DOI: http://dx.doi.org/10.1016/S0951-8320(97)00020-3
  8. Koji IWATA, "Risk Evaluation Method for Improvement of Railway Signalling Systems", Quarterly Report of RTRI, Volume 51, pages 205-213, December 2010. DOI: http://dx.doi.org/10.2219/rtriqr.51.205