DOI QR코드

DOI QR Code

Physical Properties Effect of Dry-Heat and Microwave-Cured Acrylic Resins depending on the Irradiation-Induced Changes

유도광선변화에 따른 건식중합과 마이크로파중합 아크릴레진의 물리적 성질영향

  • Kim, Gyu-Ri (Division of Dental Technology, Gimcheon University)
  • 김규리 (김천대학교 치기공학과)
  • Received : 2015.04.24
  • Accepted : 2015.07.16
  • Published : 2015.07.31

Abstract

The purpose of this study was to research the property change of acrylic resins depending on the induced-beam change and research the improved physical property of dry-heat and microwave-cured dental place acrylic resin in order to develop the acrylic resins with the optimum characteristic. As a result of observing flexural rigidity, hardness and color difference, the dry-heat-cured specimens of Vertex RS and Paladent 20 showed ideal property at 5, 15, and 25 kGy irradiation. The microwave-cured specimens of Vertex RS and Paladent 20 showed ideal property at 5 kGy irradiation. The correlation analysis showed a positive correlation among ARD, flexural rigidity (0 418), E coefficient (0.675) and Barcol hardness (0 588). The radiation cure technology is helpful for relieving the contamination caused by the manufacture of polymer composite. It can significantly contribute to the fusion of ultra violet cure technology and nano technology and the improvement of mechanical property without giving effect to the workability of polymer.

이 연구는 아크릴 수지의 유도광선변화에 따른 속성 변화를 연구하여 최적의 특성을 가진 아크릴 수지를 개발할 수 있도록 건열 및 마이크로파 경화 의치상 아크릴 수지의 향상된 물성에 대한 연구이다. 굽힘강도와 경도, 색차를 관찰한 결과 Vertex RS 및 Paladent 20는 건식 열 경화 시편 5, 15, 25 kGy의 조사에 이상적인 속성을 보였다. 마이크로 웨이브 경화에서는 5 kGy의 조사에서 이상적인 속성을 보였다. 상관관계 분석은 ARD와 굴곡 강도 (0 418), E 계수 (0.675), 및 바콜 경도 (0 588) 사이의 긍정적인 상관관계를 보여 주었다. 방사선 경화형 기술은 고분자 복합 재료의 제작으로 인한 오염 문제를 완화하는 데 도움이 될 수 있으며 고분자의 가공성에 영향을 주지 않고 자외선 경화 기술과 나노 기술 융합 및 기계적 특성의 향상에 크게 기여할 수 있다.

Keywords

References

  1. Pickett HG, Appleby RC, "A comparison of six acrylic resin processing technics", J Am Dent Assoc, pp. 1309-1314, 1970. DOI: http://dx.doi.org/10.14219/jada.archive.1970.0255
  2. Price CA. A history of dental polymers. Aust Prosthodont J, Vol. 8, pp. 47-54 1994.
  3. Jorge JH, Giampaolo ET, Machado AL, et al, "Cytotoxicity ofdenture base acrylic resins: a literature review", J Prosthet Dent, Vol. 90, No 2, pp. 190-193, 2003. DOI: http://dx.doi.org/10.1016/S0022-3913(03)00349-4
  4. Heath JR, Davenport JC, Jones PA. "The abrasion of acrylic resin by cleaning pastes", J Oral Rehabil, Vol. 10, No 2, pp. 159-175, 1983. DOI: http://dx.doi.org/10.1111/j.1365-2842.1983.tb00110.x
  5. Barsby MJ, Braden M, "Visco-elastic Properties of Pour (Fluid) Denture Base Resins", JDR, Vol. 60, No 2, pp. 146-148, 1981. DOI: http://dx.doi.org/10.1177/00220345810600020901
  6. Jeon YM, Lim HS, Shin SY. "The effect of fermented foods on the color and hardness change of denture base acrylic resins", J Advanced, Vol. 42, No 4, pp. 344-355. 2004.
  7. Wozniak WT, Muller TP. "Photographic assessment of color changes in cold and heat cured resins", JOral Rehabil, Vol. 8, No 4, pp. 333-339, 1981. DOI: http://dx.doi.org/10.1111/j.1365-2842.1981.tb00507.x
  8. Fusayama T, Hirano T, Kono A. "Discoloration test of acrylic resin filling by an organic dye", JProsthet Dent, Vol. 25, pp. 532-539, 1971. DOI: http://dx.doi.org/10.1016/0022-3913(71)90211-3
  9. Saygili G, Sahmali SM, Demirel F. "The effect of placement of glass fibers and aramid fibers on the fracture resistance of provisional restorative materials", Oper Dent, Vol. 28, No 1, pp. 80-5, 2003.
  10. Henderson JD, Mullarky RH, Ryan DE, "Tissue biocompatibility of kevlar aramid fibers and polymethylmethacrylate, composites in rabbits", J Biomed Mater Res, Vol. 21, No 1, pp. 59-64, 1987. DOI: http://dx.doi.org/10.1002/jbm.820210110
  11. Wendt SL. "The effect of heat used as secondary care upon the physical properties of three composite resins", Quintessence, Vol. 8, No 4, pp. 3351-3355, 1987.
  12. Vallittu PK. "Comparison of two different silane compounds used for improving adhesion between fibres and acrylic denture base material", J Oral Rehabi, Vol. 20, No 5, pp. 533-539, 1993. DOI: http://dx.doi.org/10.1111/j.1365-2842.1993.tb01640.x
  13. Karacaer O, Polat TN, Tezvergil A, Lassila LV, Vallittu PK, "The effect of length and concentration of glass fibers on the mechanical properties of an injection and a compression molded denture base polymer", J Prosthet Dent, Vol. 90, pp. 385-93, 2003. DOI: http://dx.doi.org/10.1016/S0022-3913(03)00518-3
  14. Ladha K, Shah D. "An in-vitro evaluation of the flexural strength of heat-polymerized poly (methyl methacrylate) denture resin reinforced with fibers", J Indian Prosthodont Soc, Vol. 11, No 4, pp. 215-20, 2011. DOI: http://dx.doi.org/10.1007/s13191-011-0086-5
  15. Yu SH, Lee Y, Oh S, Cho HW, Oda Y, Bae JM, "Reinforcing effects of different fibers on denture base resin based on the fiber type, concentration, and combination", Dent Mater J, Vol. 31, No 6, pp. 1039-46, 2012. DOI: http://dx.doi.org/10.4012/dmj.2012-020
  16. Wendt SL, "The effect of heat used as secondary care upon the physical properties of three composite resins", Quintessence Int, Vol. 18, No. 5, pp. 351-356, 1987.
  17. Phillips RW. "Skinner's science of dental", materials 8th Ed, W.B. Saunders Company. pp. 161-170, 1982.
  18. Jeon YM, Lim HS, Shin SY, "The effect of fermented foods on the color and hardness change of denture base acrylic resins", J Advanced. Vol. 42, No 4, pp 344-355, 2004.
  19. Aoyagi Y, Umemoto K, Kurata S. "Chemical properties of 1,3-bis(3-methacryloxypropyl)-1,1,3,3-tetramethyldisiloxa ne-methyl methacrylate copolymer", Dent Mater J. Vol. 31, No 2, pp. 215-8, 2012. DOI: http://dx.doi.org/10.4012/dmj.2009-121
  20. Kaya E, Kurt A, Er M, "Thermal degradation behavior of methyl methacrylate derived copolymer", J Nanosci Nanotechnol. Vol. 12, No 11, pp. 8502-12, 2012. DOI: http://dx.doi.org/10.1166/jnn.2012.6670
  21. Nishii M. "Studies on the curing of denture base resins with microwave irradiation: With particular reference to heat curing resins", J Osaka Dent Univ. Vol. 2, pp. 23-40, 1968.
  22. Korea Atomic Energy Research Institute, "Studies on industrial Application of Radiation: Synthesis of Functional Materials by Radiation", KAER/RR-2816, Ministry of Science & Technology. pp. 29, 2006.
  23. Choi JH, Lee YJ, Lim YM, PH Kang, Shin Jh, Nho YC, "Radiation Processing of Polymeric Materials", Polymer Science and Technology. Vol. 18, pp. 253-8, 2007.
  24. Korea Atomic Energy Research Institute, "Global Dynamics and International Cooperation Needs of RT Development and Utilization for the Estabishment of the Northeast Asia RT Hub in Korea", KAER/RR-2598, Ministry of Science & Technology, pp. 115, 2005.
  25. ISO 20795-1, "International Standard. Dentistry base polymer", BS EN ISO 20795-1. pp. 1-45, 2013.
  26. Wozniak WT, "proposed guidelines for acceptance program for dental shade guide", Am Dent Assc, pp1-2, 1987.
  27. Eldiwany M, Friedl KH, Powers JM, "Color stability of light-cured and post-cured composites", Am J Dent. Vol. 8, No 4, pp. 179-81, 1995.
  28. O'Brien WJ, Groh CL, Boenke KM, "A new, small-color-difference equation for dental shades", J Dent Res. Vol. 69, No 11, pp. 1762-4, 1990. DOI: http://dx.doi.org/10.1177/00220345900690111001
  29. MDS Nordion, "Gamma Compatible Materials Reference Guide", MDS Nordion Division PCCS 121B. pp. 1-3, 2007.