DOI QR코드

DOI QR Code

불확실성 파라미터를 포함하는 김발시스템의 상태궤환 강인제어기 설계

A Robust State Feedback Control of Gimbal System with Parametric Uncertainty

  • 전영범 (LIG넥스원 우주영상연구센터) ;
  • 최우석 (LIG넥스원 우주영상연구센터) ;
  • 한지훈 (LIG넥스원 우주영상연구센터) ;
  • 이성우 (국방과학연구소 국방위성체계개발단) ;
  • 강태하 (국방과학연구소 국방위성체계개발단)
  • 투고 : 2014.10.06
  • 심사 : 2015.07.29
  • 발행 : 2015.08.25

초록

본 논문에서는 불확실성 파라미터를 포함한 김발시스템의 상태궤환 강인제어기를 제안하였다. 제안한 제어기는 김발시스템 동역학 변화에 강인하도록 설계하였고, 위치 및 속도 정상상태 오차 감소를 위한 동적보상기를 상태변수에 추가하였다. 페루프 시스템의 안정도는 Lyapunov 안정도판별법을 이용하여 증명하고, 2축 김발시스템 모델링을 이용한 모의실험을 통해 제어기 성능입증을 수행하였다.

In this paper, we propose a state feedback robust controller of 2-axis gimbal system which have bounded parametric uncertainty. The proposed controller is robust against dynamics variations of gimbal system and contains a dynamic compensator in order to improve a steady state error and a transient response. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulation on a 2-axis gimbal system.

키워드

참고문헌

  1. S.K Lee and J.Y Lee, "Design and Implementation for Motion control system with precise driving machanism," IEMEK J.Embed.Sys.Appl., Vol. 8, no. 3, pp. 129-136, June, 2013. https://doi.org/10.14372/IEMEK.2013.8.3.129
  2. K.N Lee and B.H Lee, "Stabilization system for mobile antenna gimbal based on dynamic characteristics analysis," Trans.Korean Soc.Mech. Eng.A., Vol. 37, no. 7, pp. 851-856, 2013. https://doi.org/10.3795/KSME-A.2013.37.7.851
  3. K.R Lee and T.S Kim, "Delay Dependent Fuzzy $H{\infty}$ control radar gimbal stabilization system with parameter uncertainty and time delay," Journal of Control, Automation and systems Engineering., Vol. 11, no. 11, pp. 920-929, Nov, 2005. https://doi.org/10.5302/J.ICROS.2005.11.11.920
  4. Slotine, J.J.E and Li, W, "Adaptive Manipulator control : A Case Study," IEEE Trans. Automat. Cont., Vol. 33, no. 11, pp. 995-1003, Nov, 1998.
  5. Kelly, R, "Robust Asymptotically stable visual servoing of planar robots," IEEE Trans. Robotics and automat., Vol. 12, no. 5, pp. 759-766, Oct, 1996. https://doi.org/10.1109/70.538980
  6. Imura, J, Sugie, T and Yoshikawa, T, "Adaptive Robust Control of Robot Manipulators Theory and Experiment," IEEE Trans. Robotics and Automat., Vol. 10, no. 5, pp. 705-710, Oct, 1994. https://doi.org/10.1109/70.326574
  7. F.L. Lewis, C.T Abdallah and D.M. Dawson, "Control of Robot Manipulators," Macmillan, New York, 1989.
  8. Jason Osborne, Gregory Hicks and Robert Fuentes, "Global Analysis of the Double-Gimbal Mechanism," IEEE Control Systems Magazine, Aug, 2008.
  9. Kim, C. S., Mo, E. J., Han, S. M., Jie, M. S., & Lee, K. W. "Robust visual servo control of robot manipulators with uncertain dynamics and camera parameters" International Journal of Control, Automation and Systems, Vol.8, no. 2 , pp. 308-313, 2010 https://doi.org/10.1007/s12555-010-0217-5
  10. S.P, Hwang and J.H, Park, "Control System Design for a UAV-Mounted Camera Gimbal Subject to Coulomb Friction", Journal of Institute of Control, Robotics and Systems, Vol.18, no.7, pp. 680-687, June, 2012 https://doi.org/10.5302/J.ICROS.2012.18.7.680
  11. M.S Jie and K.W Lee. "Image-Based robust control of robot manipulators with integral actions." Computational Science-ICCS Springer Berlin Heidelberg, pp.108-116, 2006