DOI QR코드

DOI QR Code

지진파 입사방향에 따른 매설관 종방향 응답특성 규명

Effect of Incident Direction of Earthquake Motion on Seismic Response of Buried Pipeline

  • Kwak, Hyungjoo (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Duhee (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Lee, Jangguen (Korea Institute of Construction Technology) ;
  • Kang, Jaemo (Korea Institute of Construction Technology)
  • 투고 : 2015.07.22
  • 심사 : 2015.08.17
  • 발행 : 2015.09.01

초록

이 연구에서는 사실적인 매설관의 종방향 지진 응답특성을 규명하기 위하여 3차원 시간 이력해석이 가능한 쉘-스프링 수치모델을 구축하였으며 지진파 입사방향, 2방향 재하의 영향을 평가하였다. 조화운동을 적용한 결과, 이의 주기는 큰 영향을 주는 것으로 나타났다. 이는 주기가 감소할수록 매설관의 곡률이 증가하며 응답이 증가하기 때문인 것으로 판단된다. 입사방향의 영향을 평가하기 위하여 매설관 축 방향, 수평평면, 그리고 수직평면으로 운동을 재하 하였다. 매설관 축 방향으로 하중을 재하할 경우 휨 변형만을 유발하므로 응답이 매우 작게 계산되었다. 수평 및 수직평면에서 매설관 축 방향과 $45^{\circ}$로 재하 하는 경우 축방향 변위가 응답에 지배적인 영향을 주는 것으로 나타났다. 또한 2방향 재하 시, 휨 변형만을 유발하는 요소의 영향이 극히 작으므로 1방향으로만 재하 하는 경우와 결과가 유사하게 계산되었다. 계측기록을 재하 하는 경우에도 응답은 유사하게 계산되었고 1방향 및 2방향 해석의 결과는 크게 다르지 않은 것으로 나타났다. 결과적으로 매설관의 종방향 지진 응답은 축 방향 변위를 유발하는 1방향 재하만으로도 충분히 정확하게 예측할 수 있을 것으로 판단된다.

In this paper, a 3D shell-spring model that can perform time history analysis of buried pipelines is used to evaluate the effect of the incident direction of the earthquake motion. When applying harmonic motions, it is shown that the period of vibration has pronounced influence on the response of buried pipelines. With decrease in the period, the curvature of the pipeline and corresponding response are shown to increase. To evaluate the effect of the incident angle, the motions are applied in the direction of the pipleline, horizontal, and vertical planes. When the motion is applied parallel to the direction of the pipeline, it only induces bending strains and therefore, the response is the lowest. Under motions subjected in horizontal and vertical planes at an angle of $45^{\circ}$ from the longitudinal axis of the buried pipeline, the axial deformation is shown to contribute greatly to the response of the pipelines. When imposing two-components simultaneously, the calculated response is similar to the case where only single-component is imposed. It is because one component only induces bending strain, resulting in very small increase in the response. The trend of the response is shown to be quite similar for recorded motions. Therefore, it is concluded that use of a single-component is sufficient for estimation of the longitudinal response of buried pipelines.

키워드

참고문헌

  1. ALA (2001), Guidelines for the design of buried steel pipe, pp. 1-76.
  2. ALA (2005), Seismic guidelines for water pipelines, pp. 1-256.
  3. Anastasopoulos, I., Gerolymos, N., Drosos, V., Kourkoulis, R., Georgarakos, T. and Gazetas, G. (2007), Nonlinear response of deep immersed tunnel to strong seismic shaking, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 9, pp. 1067-1090. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1067)
  4. API (2000), Specification for line pipe, API specification 5L, Vol. 42, pp. 1-155.
  5. ASCE (1984), Guidelines for the seismic design of oil and gas pipeline systems: ASCE, pp. 1-473.
  6. Datta, T. K. (1999), Seismic response of buried pipelines: a state-of-the-art review, Nuclear Engineering and Design, Vol. 192, No. 2-3, pp. 271-284. https://doi.org/10.1016/S0029-5493(99)00113-2
  7. Elnashai, A. S., Papanikolaou, V. K. and Lee, D. H. (2011), Zeus NL-a system for inelastic analysis of structures, pp. 1-147.
  8. Gantes, C. J. and Bouckovalas, G. (2013), Seismic verification of the high pressure natural gas pipeline Komotini-Alexandroupoulis-Kipi in areas of active fault crossings, Structural Engineering International, Vol. 23, No. 2, pp. 204-208. https://doi.org/10.2749/101686613X13439149157164
  9. Gantes, C. J. and Melissianos, V. (2013), Numerical analysis of buried steel pipeline, 2nd International Balkans Conference on Challenges of Civil Engineering, Epoka University, Tirana, Albania, pp. 1-11.
  10. Hindy, A. and Novak, M. (1979), Earthquake response of underground pipelines, Earthquake Engineering & Structural Dynamics, Vol. 7, No. 5, pp. 451-476. https://doi.org/10.1002/eqe.4290070506
  11. Hindy, A. and Novak, M. (1980), Pipeline response to random ground motion, Journal of the Engineering Mechanics Division-Asce, Vol. 106, No. 2, pp. 339-360.
  12. Joshi, S., Prashant, A., Deb, A. and Jain, S. K. (2011), Analysis of buried pipelines subjected to reverse fault motion, Soil Dynamics and Earthquake Engineering, Vol. 31, No. 7, pp. 930-940. https://doi.org/10.1016/j.soildyn.2011.02.003
  13. Lee, D. H., Kim, B. H., Lee, H. and Kong, J. S. (2009), Seismic behavior of a buried gas pipeline under earthquake excitations, Engineering Structures, Vol. 31, No. 5, pp. 1011-1023. https://doi.org/10.1016/j.engstruct.2008.12.012
  14. Luco, J. and De Barros, F. (1994), Seismic response of a cylindrical shell embedded in a layered viscoelastic half-space. I: Formulation, Earthquake Engineering & Structural Dynamics, Vol. 23, No. 5, pp. 553-567. https://doi.org/10.1002/eqe.4290230507
  15. Mclaughlin, P. and O'Rourke, M. (2009), Strain in pipe elbows due to wave propagation hazard, Lifeline Earthquake Engineering in a Multihazard Environment, ASCE, pp. 1-11.
  16. Nelson, I. and Weidlinger, P. (1979), Dynamic Seismic Analysis of Long Segmented Lifelines, Journal of Pressure Vessel Technology-Transactions of the Asme, Vol. 101, No. 1, pp. 10-20. https://doi.org/10.1115/1.3454592
  17. Newmark, N. M. and Rosenblueth, E. (1971), Fundamentals of earthquake engineering, pp. 1-640.
  18. Saberi, M., Behnamfar, F. and Vafaeian, M. (2013), A semianalytical model for estimating seismic behavior of buried steel pipes at bend point under propagating waves, Bulletin of Earthquake Engineering, Vol. 11, No. 5, pp. 1373-1402. https://doi.org/10.1007/s10518-013-9430-y
  19. Saberi, M., Halabian, A. M. and Vafaian, M. (2011), Numerical analysis of buried steel pipelines under earthquake excitations, 2011 Pan-Am CGS Geotechnical Conference, pp. 3260-3267.
  20. Toprak, S., Koc, A., Cetin, O. and Nacaroglu, E. (2008), Assessment of buried pipeline response to earthquake loading by using GIS, Proceedings of the 14th world conference on earthquake engineering. Beijing, China, pp. 1-8.
  21. Wang, L. R. L. and Cheng, K. M. (1979), Seismic response behavior of buried pipelines, Journal of Pressure Vessel Technology-Transactions of the Asme, Vol. 101, No. 1, pp. 21-30. https://doi.org/10.1115/1.3454594
  22. Wong, K., Datta, S. and Shah, A. (1986), Three-dimensional motion of buried pipeline. I: Analysis, Journal of engineering mechanics, Vol. 112, No. 12, pp. 1319-1337. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:12(1319)
  23. Xie, X., Symans, M. D., O'Rourke, M. J., Abdoun, T. H., O'Rourke, T. D., Palmer, M. C. and Stewart, H. E. (2011), Numerical modeling of buried HDPE Pipelines subjected to strike-slip faulting, Journal of Earthquake Engineering, Vol. 15, No. 8, pp. 1273-1296. https://doi.org/10.1080/13632469.2011.569052