DOI QR코드

DOI QR Code

A New Histone Deacetylase Inhibitor, MHY219, Inhibits the Migration of Human Prostate Cancer Cells via HDAC1

  • De, Umasankar (School of Pharmacy, Sungkyunkwan University) ;
  • Kundu, Soma (College of Pharmacy, Pusan National University) ;
  • Patra, Nabanita (College of Pharmacy, Pusan National University) ;
  • Ahn, Mee Young (Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Institute, Daejeon Dental Hospital, Wonkwang University) ;
  • Ahn, Ji Hae (School of Pharmacy, Sungkyunkwan University) ;
  • Son, Ji Yeon (School of Pharmacy, Sungkyunkwan University) ;
  • Yoon, Jung Hyun (College of Pharmacy, Pusan National University) ;
  • Moon, Hyung Ryoung (College of Pharmacy, Pusan National University) ;
  • Lee, Byung Mu (School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Hyung Sik (School of Pharmacy, Sungkyunkwan University)
  • Received : 2015.03.09
  • Accepted : 2015.05.06
  • Published : 2015.09.01

Abstract

Histone deacetylase (HDAC) inhibitors are considered novel agents for cancer chemotherapy. We previously investigated MHY219, a new HDAC inhibitor, and its potent anticancer activity in human prostate cancer cells. In the present study, we evaluated MHY219 molecular mechanisms involved in the regulation of prostate cancer cell migration. Similar to suberanilohydroxamic acid (SAHA), MHY219 inhibited HDAC1 enzyme activity in a dose-dependent manner. MHY219 cytotoxicity was higher in LNCaP ($IC_{50}=0.67{\mu}M$) than in DU145 cells ($IC_{50}=1.10{\mu}M$) and PC3 cells ($IC_{50}=5.60{\mu}M$) after 48 h of treatment. MHY219 significantly inhibited the HDAC1 protein levels in LNCaP and DU145 cells at high concentrations. However, inhibitory effects of MHY219 on HDAC proteins levels varied based on the cell type. MHY219 significantly inhibited LNCaP and DU145 cells migration by down-regulation of matrix metalloprotease-1 (MMP-1) and MMP-2 and induction of tissue inhibitor of metalloproteinases-1 (TIMP-1). These results suggest that MHY219 may potentially be used as an anticancer agent to block cancer cell migration through the repression of MMP-1 and MMP-2, which is related to the reduction of HDAC1.

Keywords

References

  1. Abbas, A. and Gupta. S. (2008) The role of histone deacetylases in prostate cancer. Epigenetics 3, 300-309. https://doi.org/10.4161/epi.3.6.7273
  2. Ahn, M. Y., Kang, D. O., Na, Y. J., Yoon, S., Choi, W. S., Kang, K. W., Chung, H. Y., Jung, J. H., Min, D. S. and Kim, H. S. (2012) Histone deacetylase inhibitor, apicidin, inhibits human ovarian cancer cell migration via class II histone deacetylase 4 silencing. Cancer Lett. 325, 189-199. https://doi.org/10.1016/j.canlet.2012.06.017
  3. Catalona, W. J. (1994) Management of cancer of the prostate. N. Engl. J. Med. 331, 996-1004. https://doi.org/10.1056/NEJM199410133311507
  4. Chambers, A. F. and Matrisian. L. M. (1997) Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89, 1260-1270. https://doi.org/10.1093/jnci/89.17.1260
  5. Chiu, H. W., Yeh, Y. L., Wang, Y. C., Huang, W. J., Chen, Y. A., Chiou, Y. S., Ho, S. Y., Lin, P. and Wang, Y. J. (2013) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, enhances radiosensitivity and suppresses lung metastasis in breast cancer in vitro and in vivo. PLoS One 8, e76340. https://doi.org/10.1371/journal.pone.0076340
  6. Duffy, M. J, Maguire, T. M., Hill, A., McDermott, E. and O'Higgins, N. (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res. 2, 252-257. https://doi.org/10.1186/bcr65
  7. Emanuele, S., Lauricella, M. and Tesoriere, G. (2008) Histone deacetylase inhibitors: apoptotic effects and clinical implications. Int. J. Oncol. 33, 637-646.
  8. Fulda, S. (2008) Modulation of TRAIL-induced apoptosis by HDAC inhibitors. Curr. Cancer Drug Targets 8,132-140. https://doi.org/10.2174/156800908783769355
  9. Glozak, M. A. and Seto, E. (2007) Histone deacetylases and cancer. Oncogene 26, 5420-5432. https://doi.org/10.1038/sj.onc.1210610
  10. Halkidou, K., Gaughan, L., Cook, S., Leung, H. Y., Neal, D. E. and Robson, C. N. (2004a) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59, 177-189. https://doi.org/10.1002/pros.20022
  11. Halkidou, K., Cook, S., Leung, H.Y., Neal, D. E. and Robson, C. N. (2004b) Nuclear accumulation of histone deacetylase 4 (HDAC4) coincides with the loss of androgen sensitivity in hormone refractory cancer of the prostate. Eur. Urol. 45, 382-389. https://doi.org/10.1016/j.eururo.2003.10.005
  12. Jung, K. W., Won, Y. J, Kong, H. J., Oh, C. M., Seo, H. G. and Lee, J. S. (2013) Prediction of cancer incidence and mortality in Korea, 2013. Cancer Res. Treat. 45, 15-21. https://doi.org/10.4143/crt.2013.45.1.15
  13. Kim, H. J., Park, M. K., Kim, S. Y. and Lee, C. H. (2014) Novel suppressive effects of ketotifen on migration and invasion of MDA-MB-231 and HT-1080 cancer cells. Biomol. Ther. 22, 540-546. https://doi.org/10.4062/biomolther.2014.081
  14. Kim, M. S., Son, M. W., Kim, W. B., Park, Y. I. and Moon, A. (2000) Apicidin, an inhibitor of histone deacetylase, prevents H-ras-induced invasive phenotype. Cancer Lett. 157, 23-30. https://doi.org/10.1016/S0304-3835(00)00465-1
  15. Laurenzana, A., Balliu, M., Cellai, C., Romanelli, M. N. and Paoletti, F. (2013) Effectiveness of the histone deacetylase inhibitor (S)-2 against LNCaP and PC3 human prostate cancer cells. PLoS One 8, e58267. https://doi.org/10.1371/journal.pone.0058267
  16. LeRoith, D., Baserga, R., Helman, L., Roberts, C.T.Jr. (1995) Insulinlike growth factors and cancer. Ann. Intern. Med. 122, 54-59. https://doi.org/10.7326/0003-4819-122-1-199501010-00009
  17. Levy, D. E., Lapierre, F., Liang, W., Ye, W., Lange, C. W., Li, X., Grobelny, D., Casabonne, M., Tyrrell, D., Holme, K., Nadzan, A. and Galardy, R. E. (1998) Matrix metalloproteinase inhibitors: a structure-activity study. J. Med. Chem. 41,199-223. https://doi.org/10.1021/jm970494j
  18. Liotta, L. A., Steeg, P. S. and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327-336. https://doi.org/10.1016/0092-8674(91)90642-C
  19. Liotta, L. A. (1986) Tumor invasion and metastases--role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res. 46, 1-7. https://doi.org/10.1016/S0065-230X(08)60034-2
  20. Min, K. N., Joung, K. E., Kim, D. K. and Sheen, Y. Y. (2012) Anti-cancer effect of IN-2001 in MDA-MB-231 human breast cancer. Biomol. Ther. 20, 313-319. https://doi.org/10.4062/biomolther.2012.20.3.313
  21. Pacheco, M. M., Mourao, M., Mantovani, E. B., Nishimoto, I. N. and Brentani, M. M. (1998) Expression of gelatinases A and B, stromelysin-3 and matrilysin genes in breast carcinomas: clinico-pathological correlations. Clin. Exp. Metastasis 16, 577-585. https://doi.org/10.1023/A:1006580415796
  22. Patra, N., De, U., Kim, T. H., Lee, Y. J., Ahn, M. Y., Kim, N. D., Yoon, J. H., Choi, W. S., Moon, H. R., Lee, B. M. and Kim, H.S. (2013) A novel histone deacetylase (HDAC) inhibitor MHY219 induces apoptosis via up-regulation of androgen receptor expression in human prostate cancer cells. Biomed. Pharmacother. 67, 407-415 https://doi.org/10.1016/j.biopha.2013.01.006
  23. Prins, G. S. (2008) Endocrine disruptors and prostate cancer risk. Endocr. Relat. Cancer 15, 649-656. https://doi.org/10.1677/ERC-08-0043
  24. Pulukuri, S. M. and Rao, J. S. (2008) Matrix metalloproteinase-1 promotes prostate tumor growth and metastasis. Int. J. Oncol. 32, 757-765.
  25. Robbins. A. R., Jablonski, S. A., Yen, T. J., Yoda, K., Robey, R., Bates, S. E. and Sackett, D. L. (2005) Inhibitors of histone deacetylases alter kinetochore assembly by disrupting pericentromeric heterochromatin. Cell Cycle 4, 717-726. https://doi.org/10.4161/cc.4.5.1690
  26. Seligson, D. B., Horvath, S., Shi, T., Yu, H., Tze, S., Grunstein, M. and Kurdistani, S. K. (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262-1266. https://doi.org/10.1038/nature03672
  27. Seo, J., Min, S. K., Park, H. R., Kim, D. H., Kwon, M. J., Kim, L. S. and Ju, Y. S. (2014) Expression of histone deacetylases HDAC1, HDAC2, HDAC3, and HDAC6 in invasive ductal carcinomas of the breast. J. Breast Cancer 17, 323-331. https://doi.org/10.4048/jbc.2014.17.4.323
  28. Weichert, W., Roske, A., Gekeler, V., Beckers, T., Stephan, C., Jung, K., Fritzsche, F. R., Niesporek, S., Denkert, C., Dietel, M. and Kristiansen, G. (2008) Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer 98, 604-610. https://doi.org/10.1038/sj.bjc.6604199
  29. Zhang, L., Liu, N., Xie, S., He, X., Zhou, J., Liu, M., Li, D. (2014) HDAC6 regulates neuroblastoma cell migration and may play a role in the invasion process. Cancer Biol. Ther. 15, 1561-1570 https://doi.org/10.4161/15384047.2014.956632
  30. Zhao, W., Han, H. B. and Zhang, Z. Q. (2011) Suppression of lung cancer cell invasion and metastasis by connexin43 involves the secretion of follistatin-like 1 mediated via histone acetylation. Int. J. Biochem. Cell Biol. 43, 1459-1468. https://doi.org/10.1016/j.biocel.2011.06.009

Cited by

  1. Histone deacetylase inhibitor, Romidepsin (FK228) inhibits endometrial cancer cell growth through augmentation of p53-p21 pathway vol.82, 2016, https://doi.org/10.1016/j.biopha.2016.04.053
  2. Inhibition of cancer migration and invasion by knocking down delta-5-desaturase in COX-2 overexpressed cancer cells vol.11, 2017, https://doi.org/10.1016/j.redox.2017.01.016
  3. A Mercaptoacetamide-Based Class II Histone Deacetylase Inhibitor Suppresses Cell Migration and Invasion in Monomorphic Malignant Human Glioma Cells by Inhibiting FAK/STAT3 Signaling 2017, https://doi.org/10.1002/jcb.26133
  4. Inhibitors of histone deacetylase as antitumor agents: A critical review vol.67, 2016, https://doi.org/10.1016/j.bioorg.2016.05.005
  5. Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2 vol.25, pp.6, 2017, https://doi.org/10.4062/biomolther.2016.228
  6. Design of Fluorescent Coumarin-Hydroxamic Acid Derivatives as Inhibitors of HDACs: Synthesis, Anti-Proliferative Evaluation and Docking Studies vol.25, pp.21, 2015, https://doi.org/10.3390/molecules25215134
  7. Long Non-Coding RNA Landscape in Prostate Cancer Molecular Subtypes: A Feature Selection Approach vol.22, pp.4, 2015, https://doi.org/10.3390/ijms22042227
  8. Novel Combinatorial Approaches to Tackle the Immunosuppressive Microenvironment of Prostate Cancer vol.13, pp.5, 2021, https://doi.org/10.3390/cancers13051145