DOI QR코드

DOI QR Code

Morphological characteristics of major airborne pollen in Korea peninsula

  • Moon, Hye-Kyoung (Laboratory of Plant Systematics, Department of Biology and Institute of Basic Sciences, Kyung Hee University) ;
  • Kong, Min-Jung (Laboratory of Plant Systematics, Department of Biology and Institute of Basic Sciences, Kyung Hee University) ;
  • Song, Jun-Ho (Laboratory of Plant Systematics, Department of Biology and Institute of Basic Sciences, Kyung Hee University) ;
  • Kim, Sun-Yu (National Institute of Biological Resources, Plant Resources Division) ;
  • Kim, Jin-Suk (National Institute of Biological Resources, Plant Resources Division) ;
  • Jung, Eun-Hee (National Institute of Biological Resources, Plant Resources Division) ;
  • Park, Chan-Ho (National Institute of Biological Resources, Plant Resources Division) ;
  • Lee, Byoung-Yoon (National Institute of Biological Resources, Plant Resources Division) ;
  • Hong, Suk-Pyo (Laboratory of Plant Systematics, Department of Biology and Institute of Basic Sciences, Kyung Hee University)
  • Received : 2015.06.01
  • Accepted : 2015.07.27
  • Published : 2015.08.30

Abstract

Although airborne pollen is invisible to the eye, it has been known as a major source to respiratory allergic reactions. For this reason, airborne pollen is monitoring in many countries to predict pollen concentration based on locality and season. However, the morphological characteristics of airborne pollen and their potential tendency as an allergen are still obscure. In the present study, we selected 52 airborne pollen samples based on previously reported data and investigated their detail pollen characteristics using LM and SEM. Major airborne pollen in Korea has sorted in 19 families (most angiosperms except four gymnosperm families), and all pollen grains are small to medium in size ($P=17.34-49.86{\mu}m$) apart from the bisaccate pollen grains of Pinaceae ($P=46.49-106.20{\mu}m$). The aperture number and shape vary from sulcate to polyporate. While the inaperture pollen has found only in gymnosperm (Cupressaceae and Taxaceae), triporate or polyporate is common pollen type in angiosperm. The sexine ornamentations could divide into several types, but the most sculpturing types are inconspicuous like psilate, rugulate and granulate. Reticulate pollen grains as a semitectum have occurred the species of genera Platanus and Fraxinus only. To estimate the possible relationships between pollen features and allergen, the results are discussed in botanical context.

Keywords

References

  1. Anderson, E.F., C.S. Dorsett and E.O. Fleming. 1978. The airborne pollens of Walla Walla, Washington. Annals of Allergy, Asthma & Immunology 41(4):232-235.
  2. Bousquet, J., B. Guerin, B. Hewitt, S. Lim and F.B. Michel. 1985. Allergy in the Mediterranean area III: Cross-reactivity among Oleaceae pollen. Clinical & Experimental Allergy 15(5):439-448. https://doi.org/10.1111/j.1365-2222.1985.tb02293.x
  3. Cruden, R.W. 2000. Pollen grains: Why so many? Plant Systematics and Evolution 222(1):143-165. https://doi.org/10.1007/BF00984100
  4. Culley, T.M., S.G. Weller and A.K. Sakai. 2002. The evolution of wind pollination in angiosperms. Trends in Ecology & Evolution 17(10):361-369. https://doi.org/10.1016/S0169-5347(02)02540-5
  5. De Dios Alche, J., A.J. Castro, A. Olmedilla, M.C. Fernandez, R. Rodriguez, M. Villalba and M.I. Rpdriguez-Garcia. 1999. The major olive pollen allergen (Ole e I) shows both gametophytic and sporophytic expression during anther development, and its synthesis and storage takes place in the RER. Journal of Cell Science 112(15):2501-2509.
  6. Doyle, J.A. 2010. Function and evolution of saccate pollen. New Phytologist 188(1):6-9. https://doi.org/10.1111/j.1469-8137.2010.03437.x
  7. Erdtman, G. 1960. The acetolysis method, a revised description. Svensk Botanisk Tidskrift 54(4):561-564.
  8. Faegri, K. and L. van der Pijl. 1979. The principles of pollination ecology. Pergamon Press Ltd., New York.
  9. Friedman, J. and S.C.H. Barrett. 2009. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Annals of Botany 103(9):1515-1527. https://doi.org/10.1093/aob/mcp035
  10. Irani, C., M. Karam, Z. Baz, H. Maatouk and F. Zaitoun. 2013. Airborne pollen concentrations and the incidence of allergic asthma and rhinoconjunctivitis in Lebanon. Revue Francaise d'Allergologie 53(5):441-445. https://doi.org/10.1016/j.reval.2012.12.002
  11. Jung, I.Y. and K.R. Choi. 2013. Relationship between airborne pollen concentrations and meteorological parameters in Ulsan, Korea. Journal of Ecology and Environment 36(1):65-71. https://doi.org/10.5141/ecoenv.2013.008
  12. Kim, J.S. and T.Y. Kim. 2011. Woody Plants of Korean Peninsula. Dolbegae, Paju.
  13. Linder, H.P. 1998. Morphology and the evolution of wind pollination. In: S.J. Owens and P. Rudall (eds.), Reproductive Biology in Systematics, Conservation and Economic Botany, Royal Botanic Gardens, Kew, Richmond. pp. 123-135.
  14. Lu, H., N. Wu, K.B. Liu, L. Zhu, X. Yang, T. Yao, L. Wang, Q. Li, X. Liu, C. Shen, X. Li, G. Tong and H. Jiang. 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quaternary Science Reviews 30(7):947-966. https://doi.org/10.1016/j.quascirev.2011.01.008
  15. Mardones, P., M. Grau, J. Araya, A. Cordova, I. Pereira, P. Penailillo, R. Silva, A. Moraga, R. Aguilera-Insunza, J.J. Yepes-Nunez and I. Palomo. 2013. First annual register of allergenic pollen in Talca, Chile. Allergologia et Immunopathologia 41(4):233-238. https://doi.org/10.1016/j.aller.2012.06.001
  16. Moon, H.K., S. Vinckier, J.B. Walker, E. Smets and S. Huysmans. 2008. A search for phylogenetically informative pollen characters in the subtribe Salviinae (Mentheae: Lamiaceae). International Journal of Plant Sciences 169(3):455-471. https://doi.org/10.1086/526463
  17. Niklas, K.J. 1987. Pollen capture and wind-induced movement of compact and diffuse grass panicles: Implications for pollination efficiency. American Journal of Botany 74(1):74-89. https://doi.org/10.2307/2444333
  18. Oh, J.W. and H.B. Lee. 1997. Aerobiological study for airborne pollen and mold in Kuri-shi, Kyunggi-do. Pediatric Allergy and Respiratory Disease 7(1):57-68.
  19. Oh, J.W., H.B. Lee, I.J. Kang, S.W. Kim, K.S. Park, M.H. Kook, B.S. Kim, H.S. Baek, J.H. Kim, J.K. Kim, D.J. Lee, K.R. Kim and Y.J. Choi. 2012. The revised edition of korean calendar for allergenic pollens. Allergy, Asthma and Immunology Research 4(1):5-11. https://doi.org/10.4168/aair.2012.4.1.5
  20. Oh, J.W., I.J. Kang, S.W. Kim, M.H. Kook, B.S. Kim, J.T. Cheong and H.B. Lee. 2009. The association between the concentration of pollen and outbreak of pollinosis in childhood. Pediatric Allergy and Respiratory Disease 19(1):4-11.
  21. Oh, J.W., I.J. Kang, S.W. Kim, M.H. Kook, B.S. Kim, K.S. Shin, Y.S. Hahn, H.B. Lee, M.H. Shon, J.T. Cheong, H.R. Lee and K.E. Kim. 2006. The correlation between increased sensitization rate to weeds in children and the annual increase in weed pollen in Korea. Pediatric Allergy and Respiratory Disease 16(2):114-121.
  22. Owens, J.N., T. Takaso and C.J. Runions. 1998. Pollination in conifers. Trends in Plant Science 3(12):479-485. https://doi.org/10.1016/S1360-1385(98)01337-5
  23. Park, C.-W. 2007. The Genera of Vascular Plants of Korea. Academy Publishing Co., Seoul.
  24. Puc, M. and I. Kasprzyk. 2013. The patterns of Corylus and Alnus pollen seasons and pollination periods in two Polish cities located in different climatic regions. Aerobiologia 29(4):495-511. https://doi.org/10.1007/s10453-013-9299-x
  25. Punt, W., P.P. Hoen, S. Blackmore, S. Nilsson and A. Le Thomas. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143(1):1-81. https://doi.org/10.1016/j.revpalbo.2006.06.008
  26. Rai, H.S., P.A. Reeves, R. Peakall, R.G. Olmstead and S.W. Graham. 2008. Inference of higher-order conifer relationships from a multi-locus plastid data set. Botany 86(7):658-669. https://doi.org/10.1139/B08-062
  27. Raynor, G.S., J.V. Hayes and E.C. Ogden. 1976. Temporal variability in airborne pollen concentrations. Annals of Allergy, Asthma & Immunology 36(6):386-396.
  28. Schwendemann, A.B., G. Wang, M.L. Mertz, R.T. McWilliams, S.L. Thatcher and J.M. Osborn. 2007. Aerodynamics of saccate pollen and its implications for wind pollination. American Journal of Botany 94(8):1371-1381. https://doi.org/10.3732/ajb.94.8.1371
  29. Straka, H. 1964. Palynologia Madagassica et Mascarenica. Fam. 126: Sarcolaenaceae (Chlaenaceae). Pollen et Spores 6(1):289-301.
  30. Thiers, B. 2011. Index herbariorum, a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/ (accessed: 25 May 2015).
  31. Velasco-Jimenez, M.J., P. Alcazar, E. Dominguez-Vilches and C. Galan. 2013. Comparative study of airborne pollen counts located in different areas of the city of Cordoba (south-western Spain). Aerobiologia 29(1):113-120. https://doi.org/10.1007/s10453-012-9267-x
  32. Walker, J.W. and J.A. Doyle. 1975. The basis of angiosperm phylogeny: palynology. Annals Missouri Botanical Garden 62(3):664-723. https://doi.org/10.2307/2395271
  33. Wallander, E. 2001. Evolution of wind-pollination in Fraxinus (Oleaceae): an ecophylogenetic approach. Goteborg University, Sweden.
  34. Wallander, E. 2008. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Systematics and Evolution 273(1):25-49. https://doi.org/10.1007/s00606-008-0005-3
  35. Wang, Q., S. Nakamura, S. Lu, D. Nakajima, M. Suzuki, K. Sekiguchi and M. Miwa. 2013. Diurnal and nocturnal behaviour of airborne Cryptomeria japonica pollen grains and the allergenic species in urban atmosphere of Saitama, Japan. Asian Journal of Atmospheric Environment 7(2):65-71. https://doi.org/10.5572/ajae.2013.7.2.065
  36. Wheeler, A.W. 1992. Hypersensitivity to the allergens of the pollen from the olive tree (Olea europaea). Clinical & Experimental Allergy 22(12):1052-1057. https://doi.org/10.1111/j.1365-2222.1992.tb00129.x