DOI QR코드

DOI QR Code

Morphological Study on PNIPAAm Hydrogel Microspheres Prepared by Using SPG Membrane Emulsification and UV Photopolymerization

SPG 막유화 및 UV 광중합법에 의해 제조된 PNIPAAm 하이드로젤 입자의 형태학에 관한 연구

  • Lee, Yun Jig (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Mi Ri (Department of Applied Chemistry, Kyungpook National University) ;
  • Cheong, In Woo (Department of Applied Chemistry, Kyungpook National University)
  • Received : 2015.05.26
  • Accepted : 2015.06.15
  • Published : 2015.06.30

Abstract

W/O emulsions were prepared from the aqueous solution containing NIPAAm, MBA, and APS in the continuous phase of toluene and mineral oil mixture with HMP and Span80 by using SPG membrane emulsification, and followed by the formation of PNIPAAm hydrogel microspheres through UV photopolymerization. As the ratio of mineral oil to toluene increased in the continuous phase, both particle size of the hydrogel increased and density of PNIPAAm polymer in the hydrogel particle increased, and which significantly affected swelling/deswelling ratio ($V/V_o$) with temperature change around VPTT. When the polymerization temperature was below LCST ($20^{\circ}C$), PNIPAAm hydrogel showed filled particle morphology; however, it was turned out to hollow particle morphology with thick shell layer with $40^{\circ}C$. Both density of PNIPAAm and gel content of the hydrogel increased with the increase in MBA concentration.

SPG 막유화법에 의해 NIPAAm, MBA 및 APS를 용해시킨 수용액을 톨루엔과 미네랄오일의 혼합용액인 연속상에 HMP, Span80과 함께 유화(W/O emulsion)시킨 후, UV광중합법에 의해 PNIPAAm 하이드로젤 입자를 제조하였다. 연속상 내 미네랄 오일의 비율이 증가할수록, PNIPAAm 하이드로젤의 입도와 입자 내 PNIPAAm의 밀도가 증가하였으며, 이에 따라서 VPTT 근처에서 온도 변화에 따른 하이드로젤의 팽윤도($V/V_o$)도 크게 변화하였다. UV 광중합 시 $20^{\circ}C$에서는 속이 꽉찬 형태의 하이드로젤이 제조되었으나 LCST보다 높은 $40^{\circ}C$의 온도에서는 공동입자에서와 같이 하이드로젤의 외벽이 두껍게 형성되었다. 가교제인 MBA의 함량이 증가함에 따라서 가교도 및 입자 내 PNIPAAm의 밀도도 함께 증가하였다.

Keywords

References

  1. S. M. Joscelyne and G. Tragardh, Journal of Membrane Science, 169(1), 107 (2000). https://doi.org/10.1016/S0376-7388(99)00334-8
  2. T. Nakashima, M. Shimizu, and M. Kukizaki, Advanced Drug Delivery Reviews, 45(1), 47 (2000). https://doi.org/10.1016/S0169-409X(00)00099-5
  3. L.-Y. Chua, R. Xie, J.-H. Zhu, W.-M. Chen, T. Yamaguchi, and S. Nakao, Journal of Colloid and Interface Science, 265(1), 187 (2003). https://doi.org/10.1016/S0021-9797(03)00350-3
  4. M. Heskins and J. E. Guillet, Journal of Macromolecular Science: Part A-Chemistry, 2, 1441 (1968). https://doi.org/10.1080/10601326808051910
  5. J. D. Debord and L. A. Lyon, Langmuir, 19, 7662 (2003). https://doi.org/10.1021/la0342924
  6. Q. Sun and Y. Deng, Journal of American Chemical Society, 127(23), 8274 (2005). https://doi.org/10.1021/ja051487k
  7. C.-J. Cheng, L.-Y. Chua, P.-W. Rena, J. Zhang, and Lin Hu, Journal of Colloid and Interface Science, 313(2), 383 (2007). https://doi.org/10.1016/j.jcis.2007.05.004
  8. L.-Y. Wang, G.-H. Ma, and Z.-G. Su, Journal of Controlled Release, 106(1-2), 62 (2005). https://doi.org/10.1016/j.jconrel.2005.04.005
  9. N. Kato, Y. Sakai, and F. Takahashi, Bulletin of the Chemical Society of Japan, 74(11), 2025 (2001). https://doi.org/10.1246/bcsj.74.2025

Cited by

  1. Conductive GelMA-Collagen-AgNW Blended Hydrogel for Smart Actuator vol.13, pp.8, 2021, https://doi.org/10.3390/polym13081217