DOI QR코드

DOI QR Code

Studies on Mechanical Properties of Thermoplastic Vulcanizate Containing Acid Group

Acid Group이 도입된 TPV (Thermoplastic Vulcanizate)계 열가소성 탄성체의 기계적 물성에 관한 연구

  • Kim, Dong Ho (Korea Institute of Footwear & Leather Technology) ;
  • Kim, Gu Ni (Korea Institute of Footwear & Leather Technology)
  • Received : 2015.05.12
  • Accepted : 2015.06.13
  • Published : 2015.06.30

Abstract

We synthesized thermoplastic polyurethane elastomer containing carboxylic acid group and TPV (thermoplastic vulcanizate). We measured the mechanical, grip, debris, contact angle and adhesion properties according to introducing acid group in elastomer structure. Mechanical and wet slip properties were improved because of the hydrogen bonding by introduction of acid group. Also adhesion strength was increased as increasing of surface polarity by carboxylic acid group. The debris property of TPV made from TPU containing carboxylic acid group was improved.

본 연구에서는 carboxylic acid group이 도입된 열가소성 폴리우레탄(thermoplastic polyurethane, TPU)과 동적 가교형 TPV (thermoplastic vulcanizate)계 열가소성 탄성체를 제조하였으며, 탄성체 분자구조 내 acid group의 도입에 따른 기계적 물성, 그립성, 데브리스, 접촉각 및 접착특성 변화에 대해서 평가하였다. 연구결과 acid group이 도입된 경우 수소결합의 증가로 인해 기계적 물성과 wet slip 특성이 향상되었으며, 카르복시산에 의해 표면 극성이 증가되었기 때문에 접착력 또한 향상되었다. 그리고 acid group이 도입된 TPU를 사용해서 TPV를 제조한 결과 TPU 자체에 비해 감성특성과 데브리스(debris) 특성이 향상되었다.

Keywords

References

  1. G. Holdend, E. T. Bishop, and N. R. Lege, J. Polym. Sci. C., 26, 37 (1969).
  2. D. J. Meier, J. Polym. Sci. C., 26, 81 (1969).
  3. P. S. Pillai, D. J. Livingston, and J. D. Strang, Rubber Chem. Technol., 45, 241 (1972). https://doi.org/10.5254/1.3544703
  4. K. C. Choi, E. K. Lee, S. Y. Choi, and S. J. Park, J. Korean Ind. Eng. Chem., 13, 87 (2002).
  5. M. Folkes and P. S. Hope, In Polymer Blends and Alloys, Blackie Academic Press, New York (1992).
  6. G. Woods, The ICI Polyurethane Book, ICI Polyurethanes (1987).
  7. G. Oertel, Polyurethane Handbook, Carl Hanser Verlag, Munich (1985).
  8. M. J. Jeong, J. M. Cheon, J. H. Chun, D. Y. Mok, and H. M. Lee, Journal of adhesion and interface, 10, 4 (2009).
  9. R. P. Sijbesma and E. W. Meiger, chem. commun., 5 (2003).
  10. M. Muller, R. Stadler, F. Kremer, and G. Williams, Macromolecules, 28, 6942 (1995). https://doi.org/10.1021/ma00124a034
  11. T. Loontjens, J. Put, B. Coussens, R. Lange, J. Palmen, T. Sleijen, and B. Plum, Macromol. symp., 174, 357 (2001). https://doi.org/10.1002/1521-3900(200109)174:1<357::AID-MASY357>3.0.CO;2-8
  12. C. C. Peng and V. Abetz, Macromolecules, 38, 5575 (2005). https://doi.org/10.1021/ma050419f
  13. K. Chino, M. Ashiura, and J. Natori, Rubber chem. Technol., 75, 713 (2002). https://doi.org/10.5254/1.3544997
  14. K. Chino and M. Ashiura, Macromolecules, 34, 9201 (2001). https://doi.org/10.1021/ma011253v
  15. S. H. Son, I. H. Kim, H. J. Lee, and J. H. Kim, Polymer(korea), 21, 375 (1997).
  16. D. G. Hundiwale, U. R. Kapadi, and M. V. Pandya, J. Appl. Polym. Sci., 55, 1329 (1995). https://doi.org/10.1002/app.1995.070550906
  17. D. Y. Mok, H. D. Shin, D. H. Kim, and G. N. Kim, Journal of adhesion and interface, 14, 68 (2013). https://doi.org/10.17702/jai.2013.14.2.068
  18. T. L. Wang, C. H. Yang, Y. T. Shieh, and A. C. Yeh, Eur. Polym. J., 45, 387 (2009). https://doi.org/10.1016/j.eurpolymj.2008.11.020
  19. J. P. Soo, C. S. Ki, and L. Slusarski, Elastomers and composites, 37, 99 (2002).
  20. L. S. Son, H. N. Lee, and H. K. Lee, J. Inst. Sruf. Eng., 45, 8 (2012).