DOI QR코드

DOI QR Code

Rapid Synthesis of AgInS2/ZnS Core/Shell Nanoparticles and Their Luminescence Property

  • Lee, Seung Jae (Center for Membranes, Korea Research Institute of Chemical Technology) ;
  • Kim, Da Hea (College of Life Science and Nano Technology, Department of Chemistry, Hannam University) ;
  • Jung, Jongjin (College of Life Science and Nano Technology, Department of Chemistry, Hannam University) ;
  • Park, Joung Kyu (Center for Membranes, Korea Research Institute of Chemical Technology)
  • 투고 : 2015.06.23
  • 심사 : 2015.06.29
  • 발행 : 2015.06.30

초록

We have successfully synthesized $AgInS_2$ core and $AgInS_2$/ZnS core/shell nanoparticles by the sonochemical method. The ultrasonic based $AgInS_2$ and $AgInS_2$/ZnS nanoparticle synthesis can be utilized as a simple and rapid method. The $AgInS_2$/ZnS nanoparticles show the higher fluorescence intensity and quantum yield than $AgInS_2$ nanoparticles. Fluorescence wavelength of $AgInS_2$/ZnS shows blue shift from 635 nm to 610 nm against $AgInS_2$ because of reducing the defect sites and increasing spatial confinements. For the fluorescence lifetime, $AgInS_2$/ZnS (124.8 ns) has longer lifetime than $AgInS_2$ (54.8 ns).

키워드

참고문헌

  1. Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisle, H. -J., Bawendi, M. G. Science 2000, 290, 314-317. https://doi.org/10.1126/science.290.5490.314
  2. Bruchez Jr, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013-2016. https://doi.org/10.1126/science.281.5385.2013
  3. Li, L.; Reiss, P. J. Am. Chem. Soc, 2008, 130, 11588-11589. https://doi.org/10.1021/ja803687e
  4. Xu, S.; Kumar, S.; Nann, T. J. Am. Chem. Soc. 2006, 128, 1054-1055. https://doi.org/10.1021/ja057676k
  5. Park, J.; Kim, S. -W. J. Mater. Chem. 2011, 21, 3745-3750. https://doi.org/10.1039/c0jm03194a
  6. Xiaosheng, T.; Wenxi, B. A. H.; Xue, J. M. J. Phys. Chem. C 2012, 116, 9769-9773.
  7. Wang, X.; Pan, S.; Weng, D.; Low, C. -Y.; Rice, L.; Han, J.; Lu, Y. J. Phys. Chem. C 2010, 114, 17293-17297. https://doi.org/10.1021/jp103572g
  8. Zhong, H.; Zhou, Y.; Ye, M.; He, Y.; Ye, J.; He, C.; Yang, C.; Li, Y. Chem. Mater. 2008, 20, 6434-6443. https://doi.org/10.1021/cm8006827
  9. Mao, Mao, Mao, Mao, Mao, B.; Chuang, C.-H.; Lu, F.; Sang, L.; Zhu, J.; Burda, C. J. Phys. Chem. C 2013, 117, 648-656.
  10. Hamanaka, Y.; Ogawa, T.; Tsuzuki, M. J. Phys. Chem. C 2011, 115, 1786-1792. https://doi.org/10.1021/jp110409q
  11. Suslick, K. S. Science 1990, 247, 1439-1445. https://doi.org/10.1126/science.247.4949.1439
  12. Lee, Lee, Lee, Lee, Lee, S. J.; Kim, Y.; Jung, J.; Kim, M. Ae.; Kim, N. Lee, S. J. Kim. S. K.; Kim, Y.-R.; Park, J. K. J. Mater. Chem. 2012, 22, 11957-11963. https://doi.org/10.1039/c2jm31838e
  13. Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. J. Am. Chem. Soc. 2011, 133, 1176-1179. https://doi.org/10.1021/ja108261h
  14. Becker, W.; Hickl, H.; Zander, C.; Drexhage, K. H.; Sauer, M.; Siebert, S.; Wolfrum, J. Rev. Sci. Instrum. 1999, 70, 1835-1841. https://doi.org/10.1063/1.1149677
  15. Fisher, B. R.; Eisler, H.-J.; Stott, N. E., Bawendi, M. G. J. Phys. Chem. B 2004, 108, 143-148. https://doi.org/10.1021/jp035756+