DOI QR코드

DOI QR Code

Methyltrimethoxysilane을 이용한 반사방지 코팅막의 성능 향상

Improvement of Performance of Anti-reflective Coating Film Using Methyltrimethoxysilane

  • 금영섭 (충남대학교 정밀응용화학과) ;
  • 김효섭 (충남대학교 정밀응용화학과) ;
  • 박주식 (한국에너지기술연구원 수소연료전지연구단) ;
  • 김영호 (충남대학교 정밀응용화학과)
  • Keum, Young-Sub (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Hyo-Sub (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, Chu-Sik (Hydrogen and fuel cell department, Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2015.03.09
  • 심사 : 2015.05.06
  • 발행 : 2015.08.10

초록

Tetraethylorthosilicate (TEOS)를 전구체로서 이용하여 제조된 기존의 반사방지(AR; anti-reflective) 코팅막은 대부분 수분을 쉽게 흡수할 뿐만 아니라 낮은 내마모성을 갖는다. 본 연구에서는 AR 코팅막의 투과율, 소수성 및 내마모성을 향상할 목적으로 전구체로서 methyltrimethoxysilane (MTMS)를 사용하고 불소 실란, 산 촉매, 염기 촉매 및 산-염기 2단계 촉매를 첨가하여 다양한 AR 코팅막을 제조하였다. 제조된 AR 코팅막은 UV-Vis, 접촉각 측정기, AFM, 연필경도 및 부착성 시험을 통해 특성을 분석하였다. 그 결과, 경화온도가 $300^{\circ}C$일 때 코팅되지 않은 유리 기판의 투과율은 90.5%인 반면, AR 코팅된 유리 기판의 투과율은 94.8%로 증가하였다. 불소 실란을 첨가한 경우, 소수성이 크게 향상되었음을 나타내듯이 AR 코팅막 표면에서의 접촉각은 $96.3^{\circ}$에서 $108^{\circ}$까지 증가하였다. AR 코팅막의 내마모성은 산 촉매에 의해 향상되었으며, 그것의 투과율은 염기 촉매에 의해 증가하였다. 산-염기 2단계 촉매 반응에 의해 제조한 AR 코팅막의 경우, 상승 효과에 의해 촉매의 도입 없이 제조된 AR 코팅막과 비교하여 투과율 및 내마모성이 향상되었다.

Traditional anti-reflective (AR) coating films prepared using tetraethylorthosilicate (TEOS) as a precursor absorbs water easily in addition to having a weak abrasion resistance. To improve the transmittance, hydrophobicity and abrasion resistance of AR coating film, various AR coating films were prepared using methyltrimethoxysilane (MTMS) as a precursor in addition to introducing a fluoroalkylsilane, acid catalyst, base catalyst and acid-base two step catalyst. The prepared AR coating films were then characterized by UV-Vis spectroscopy, contact angle analyzer, atomic force microscope (AFM), pencil scratch hardness test and cross-cut test. As a result, the transmittance of bare glass was 90.5%, while that of AR coating glass increased to 94.8% at curing temperature of $300^{\circ}C$. When the fluoroalkylsilane was added, the water contact angle of AR coating film increased from $96.3^{\circ}$ to $108^{\circ}$, indicating that the hydrophobicity of the film was greatly improved. The abrasion resistance of AR coating film was also improved by the acid catalyst, whereas the transmittance increased by the base catalyst. In the case of AR coating film prepared using an acid-base two step catalyzed reaction, both the transmittance and abrasion resistance of the film was synergistically enhanced as compared with those of AR coating films prepared without introduction of a catalyst.

키워드

참고문헌

  1. D. Chen, Anti-reflection (AR) coatings made by sol-gel processes: A review, Sol. Energy Mater. Sol. Cells, 68, 313-336 (2001). https://doi.org/10.1016/S0927-0248(00)00365-2
  2. P. Nostell, A. Roos, and B. karlsson, Antireflection of glazings for solar energy applications, Sol. Energy Mater. Sol. Cells, 54, 223-233 (1998). https://doi.org/10.1016/S0927-0248(98)00074-9
  3. O. Kesmez, E. Burunkaya, N. Kiraz, H. E. Camurlu, M. Asilturk, and E. Arpac, Effect of acid, water and alcohol rations on sol-gel preparation of antireflective amorphous $SiO_2$ coatings, J. Non-Cryst. Solids, 357, 3130-3135 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.05.003
  4. W. Glaubitt and P. Lobmann, Antireflective coatings prepared by sol-gel processing: Principles and applications, J. Eur. Ceram Soc., 32, 2995-2999 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.032
  5. M. C. Bautista and A. Morales, Silica antireflective films on glass produced by the sol-gel method, Sol. Energy Mater. Sol. Cells, 80, 217-225 (2003). https://doi.org/10.1016/j.solmat.2003.06.004
  6. K. Cathro, D. Constable, and T. Solaga, Silica low-reflective coatings for collector covers, by a dip-coating process, Sol. Energy, 32, 573-579 (1984). https://doi.org/10.1016/0038-092X(84)90131-2
  7. C. J. Brinker and G. W. scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 788-791, Academic Press, San Diego, USA (1990).
  8. H. S. Kim, Y. H Kim, and J. Y. Choi, Preparation of the Anti-Reflective(AR) Coating Film by Sol-Gel Method to Improve the Efficiency of Solar Cell, Trans. Korean Hydrogen New Energy Soc., 25, 145-150 (2014). https://doi.org/10.7316/KHNES.2014.25.2.145
  9. X. X. Zhang, B. B. Xia, H. P. Ye, Y. L. Zhang, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, One-step sol-gel preparation of PDMS-silica ORMOSILs as environmental-resistant and crack-free thick antireflective coatings, J. Mater. Chem., 22, 13132-13140 (2012). https://doi.org/10.1039/c2jm31005h
  10. H. Ye, X. Zhang, Y. Zhang, L. Ye, B. Xiao, H. Lv, and B. Jiang, Preparation of antireflective coatings with high transmittance and enhanced abrasion-resistance by a base/acid two-step catalyzed sol-gel process, Sol. Energy Mater. Sol. Cells, 95, 2347-2351 (2011). https://doi.org/10.1016/j.solmat.2011.04.004
  11. G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating, Mater. Res. Bull., B78, 135-139 (2000).
  12. G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, A new method to control nano-porous structure of sol-gel derived silica films and their properties, Mater. Res. Bull., 36, 2127-2139 (2001). https://doi.org/10.1016/S0025-5408(01)00691-2
  13. J. Wang, G. Wu, J. Shen, T. Yang, Q. Zhang, B. Zhou, and Z. Deng, Scratch-Resistant Improvement of Sol-Gel Derived Nano-Porous Silica Films, J. Sol-Gel Sci. Technol., 18, 219-224 (2000). https://doi.org/10.1023/A:1008787722437
  14. S. D. Bhagat and A. V. Rao, Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process, Appl. Surf. Sci., 252, 4289-4297 (2006). https://doi.org/10.1016/j.apsusc.2005.07.006
  15. J. Y. Kim, J. H. Hwang, T. Y. Lim, M. J. Lee, S. K. Hyun, and J. H. Kim, Fabrication of Anti-Reflection Coating Film by Using Sol-gel Method, J. Photonic Sci. Technol., 3, 65-68 (2013).
  16. B. R. Yoo and D. E. Jung, Recent Progress in the Development of Si-Based Materials for Organic-Inorganic Hybrid System, Polym. Sci. Technol., 20, 124-130 (2009).
  17. J. H. Ahn, I. Kim, and C. S. Ha, Polymer/Silica Hybrid Materials via Sol-Gel Process, Polym. Sci. Technol., 20, 141-149 (2009).
  18. D. S. Yu, I. S. Kim, and J. W. Ha, Spectroscopic and Surface Characteristics of Tintable Hard Coating by Sol-Gel Method, J. Korean Oph. Opt. Soc., 13, 37-42 (2008).
  19. O. Kesmez, H. E. Camurlu, E. Burunkaya, and E. Arpac, Preparation of antireflective $SiO_2$ nanometirc films, Ceram. Int., 36, 391-394 (2010). https://doi.org/10.1016/j.ceramint.2009.07.030

피인용 문헌

  1. TEOS/염기 및 MTMS/산 혼성 용액으로 제조한 반사방지 코팅막의 특성 vol.30, pp.3, 2015, https://doi.org/10.14478/ace.2019.1031
  2. 유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조 vol.21, pp.4, 2015, https://doi.org/10.17702/jai.2020.21.4.143