DOI QR코드

DOI QR Code

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects

셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화

  • Kim, Eun Ae (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Bai, Byong Chol (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Chul Wee (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Im, Ji Sun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
  • 김은애 (한국화학연구원 C-산업육성센터) ;
  • 배병철 (한국화학연구원 C-산업육성센터) ;
  • 이철위 (한국화학연구원 C-산업육성센터) ;
  • 이영석 (충남대학교 바이오 응용화학과) ;
  • 임지선 (한국화학연구원 C-산업육성센터)
  • Received : 2015.01.23
  • Accepted : 2015.05.06
  • Published : 2015.08.10

Abstract

In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.

본 연구에서는 Cu 촉매가 도입된 활성탄소섬유를 제조하여 고효율 $SO_2$ 흡착재를 제조하였다. 라이오셀 섬유를 내염화 및 탄화공정을 통해 탄소섬유를 얻었으며, $SO_2$ 흡착능을 향상시키기 위해 KOH 활성화를 사용하여 높은 비표면적 및 균일한 미세기공구조를 부여하였다. 활성탄소섬유에 Cu 촉매를 도입하기 위하여 $Cu(NO_3)_2{\cdot}3H_2O$ 수용액을 사용하였으며, 공정 시 i) 탄소섬유 내 산소 관능기의 분해반응을 촉진하고, ii) 산화구리 및 질산염의 분해로 oxygen radical이 생성되어 탄소섬유의 활성화 반응을 촉진시켰다. 이로 인해 활성탄소섬유의 미세공과 중기공 형성효과 및 탄소섬유 표면에 고르게 분산된 Cu 촉매를 확인하였다. Cu 촉매 도입 후, 활성탄소섬유에 비해 비표면적 및 미세공의 비율이 약 10% 이상 증가되었고, $SO_2$ 흡착능이 149% 이상 향상된 결과를 얻을 수 있었다. Cu 촉매도입공정 시, 전이금속 촉매효과에 의하여 발달된 미세공, 중기공 및 비표면적에 의한 물리적 흡착과 도입된 Cu 촉매에 의한 $SO_2$ 가스의 화학적 흡착반응의 시너지 효과에 기인하여 $SO_2$ 흡착능이 향상된 것으로 사료된다.

Keywords

References

  1. J. K. Chung, Selective removal of $SO_2$ / $H_2S$ over transition metal oxide catalysts, PhD Dissertation, Pukyoung National University, Busan, Korea (2007).
  2. J. H. Lee, J. G. Kim, H. C. Yang, J. H. Kim, and J. K. Lee, Adsorption characteristics of sulfur dioxide on pellet type zeolites, Korean Chem. Eng. Res., 41, 129-133 (2003).
  3. J. A. DeBarr and A. A. Lizzio, New insights on the mechanism of $SO_2$ removal by carbon, Proceedings of the 22nd Biennial Conference on Carbon, July 16-21, San Diego, USA (1995).
  4. S. S. Kim and C. H. Lee, Adsorption of $SO_2$ by zeolite synthesized from coal fly ash, J. of the Kor. Environ. Sci., 21, 687-694 (2012).
  5. M. Suzuki, Activated carbon fiber: Fundamentals and application, Carbon, 32, 577-586 (1994). https://doi.org/10.1016/0008-6223(94)90075-2
  6. J. J. Lee, M. G. Jun, and Y. C. Kim, $SO_2$ adsorption characteristics of PAN-based activated carbon fiber impregnated with palladium and cold nanoparticles, J. Korean Ind. Eng. Chem., 18, 467-474 (2007).
  7. Z. Ryu, J. Zheng, M. Wang, and B. Zang, Nitrogen adsorption studies of PAN-based activated carbon fibers prepared by different activation methods, J. Colloid Interface Sci., 230, 312-319 (2000). https://doi.org/10.1006/jcis.2000.7078
  8. I. Martin-Gullon, R. Andrews, M. Jagoyen, and F. Derbyshire, PAN-based activated carbon fiber composites for sulfur dioxide conversion: influence of fiber activation method, Fuel, 80, 969-977 (2001). https://doi.org/10.1016/S0016-2361(00)00186-1
  9. C. C. Leng and N. G. Pinto, Effect of surface properties of activated carbons on adsorption behavior of selected aromatics, Carbon, 35, 1375-1385 (1997). https://doi.org/10.1016/S0008-6223(97)00091-2
  10. M. Yoshikawa, A. Yasutake, and I. Mochida, Low-temperature selective catalytic reduction of $NO_x$ by metal oxides supported on active carbon fibers, Appl. Catal. A, 173, 239-245 (1998). https://doi.org/10.1016/S0926-860X(98)00182-3
  11. S. A. Carabineiro, D. W. McKee, and I. F. Silva, Uncatalysed and catalysed $CO_2$ reaction using metal catalysts and binary vanadium mixtures supported on activated carbon, Carbon, 39, 451-463 (2001). https://doi.org/10.1016/S0008-6223(00)00151-2
  12. J. Matos and J. Laine, Ethylene conversion on activated carbon-supported NiMo catalysts: effect of the support, Appl. Catal, A: Gen., 241, 25-38 (2003). https://doi.org/10.1016/S0926-860X(02)00427-1
  13. S. H. You, J. S. Kim, H. T. Jang, and W. S. Cha, Adsorption and antibacterial property of impregnated activated carbon fiber, J. Kor. academia-industrial, 12, 5370-5375 (2011). https://doi.org/10.5762/KAIS.2011.12.11.5370
  14. E. A. Kim, B. C. Bai, Y. P. Jeon, C. W. Lee, Y. S. Lee, S. J. In, and J. S. Im, Effects of $NaCl/H_3PO_4$ flame retardant treatment on lyocell fiber for thermal stability and anti-oxidation properties, Appl. Chem. Eng., 25, 418-424 (2014). https://doi.org/10.14478/ace.2014.1064
  15. G. C. Cho, A study on the $H_2S$ removal using $Na_2CO_3$ impregnated activated carbon, M. S Dissertation, Busan National University, Busan, Korea (1999).
  16. S. Bhati, J. S. Mahur, S. Dixit, and O. N. Choubey, Surface and adsorption properties of activated carbon fabric prepared from cellulosic polymer: Mixed activation method, Bull. Korean Chem. Soc., 34, 569-573 (2013). https://doi.org/10.5012/bkcs.2013.34.2.569
  17. M. J. Jung, H. R. Yu, D. Y. Lee, and Y. S. Lee, Effect of boric acid treatment on the electrochemical properties of the phenol based activated carbon, Appl. Chem. Eng., 24, 201-207 (2013).
  18. S. J. Gegg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., 262-281, Academic Press, NY, USA (1982).
  19. S. Y. Eom, T. H. Cho, K. H. Cho, and S. K. Ryu, Pore size distribution of metal(Ag, Cu, Co)-containing activated carbon fibers, Korean Chem. Eng. Res., 38, 591-596 (2000).
  20. K. S. Yim, S. Y. Eom, S. K. Ryu, and D. D. Edie, Microporosity and behaviors of metal particles in metal(Ag, Cu, Co)-containing activated carbon fibers, Korean Chem. Eng. Res., 41, 503-508 (2003).
  21. W. K. Lee, K. H. Kim, S. K. Ryu, and B. S. Park, Decomposition of NO by Cu-impregnated ACFs, Korean Chem. Eng. Res., 42, 196-201 (2004).
  22. S. W. Ko, D. H. Kim, Y. D. Kim, D. S. Park, W. T. Jeong, D. H. Lee, J. Y. Lee, and S. B. Kwon, Investigation on CO adsorption and catalytic oxidation of commercial impregnated activated carbon, Appl. Chem. Eng., 24, 513-517 (2013).
  23. S. K. Ryu, S. Y. Kim, N. Gallego, and D. D. Edie, Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr(VI) adsorption, Carbon, 37, 1619-1625 (1999). https://doi.org/10.1016/S0008-6223(99)00086-X
  24. K. S. Yoon, Y. S. Lee, and S. K. Ryu, Propellant shelf-life extension by surface modified activated carbon fiber, Korean Chem. Eng. Res., 49, 443-448 (2011). https://doi.org/10.9713/kcer.2011.49.4.443
  25. J. J. Lee and Y. C. Kim, The adsorption characteristics by the optimum activation process of PAN-based carbon fiber and $SO_2$ adsorption characteristics by the impregnated nanoparticles, J. Korean Ind. Eng. Chem., 17, 532-538 (2006).
  26. U. Matatov-Meytal and M. Sheintuch, Activated carbon cloth-supported Pd-Cu catalyst: application for continuous water denitrification, Catalysis Today, 102, 121-127 (2005).
  27. H. S. Lee, Adsorption properties of carbon monoxide on copper ion-exchanged zeolite Y, M. S Dissertation, Chungnam National University, Daejeon, Korea (2004).