DOI QR코드

DOI QR Code

Predicting Package Chip Quality Through Fail Bit Count Data from the Probe Test

프로브 검사 결점 수 데이터를 이용한 패키지 칩 품질 예측 방법론

  • Park, Jin Soo (Department of Industrial Management Engineering, Korea University) ;
  • Kim, Seoung Bum (Department of Industrial Management Engineering, Korea University)
  • 박진수 (고려대학교 산업경영공학과) ;
  • 김성범 (고려대학교 산업경영공학과)
  • Received : 2015.02.09
  • Accepted : 2015.05.11
  • Published : 2015.08.15

Abstract

The quality prediction of the semiconductor industry has been widely recognized as important and critical for quality improvement and productivity enhancement. The main objective of this paper is to predict the final quality of semiconductor chips based on fail bit count information obtained from probe tests. Our proposed method consists of solving the data imbalance problem, non-parametric variable selection, and adjusting the parameters of the model. We demonstrate the usefulness and applicability of the proposed procedure using a real data from a semiconductor manufacturing.

Keywords

References

  1. An, D., Ko, H. H., Gulambar, T., Kim, J., Baek, J. G., and Kim, S. S. (2009), A semiconductor yields prediction using stepwise support vector machine. In Assembly and Manufacturing, 2009. ISAM 2009, IEEE International Symposium on, 130-136. IEEE.
  2. Baek, D. and Nam, J. (2002), Semiconductor yield improvement system using the data mining, IE interfaces, 2002 single issue, 293-300.
  3. Benjamini, Y. and Hochberg, Y. (1995), Controlling the false discovery rate : a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, Series B (Methodological), 289-300.
  4. Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002), SMOTE : synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 16, 321-357.
  5. Chawla, N. V., Lazarevic, A., Hall, L. O., and Bowyer, K. W. (2003), SMOTEBoost : Improving prediction of the minority class in boosting, In Knowledge Discovery in Databases : PKDD 2003, Springer Berlin Heidelberg, 107-119.
  6. Chen, H., Harrison, J. M., Mandelbaum, A., Van Ackere, A., and Wein, L. M. (1988), Empirical evaluation of a queueing network model for semiconductor wafer fabrication, Operations Research, 36(2), 202-215. https://doi.org/10.1287/opre.36.2.202
  7. Conover, W. J. (1999), Practical Nonparametric Statistics, 3, Wiley, New York.
  8. Cunningham, S. P., Spanos, C. J., and Voros, K. (1995), Semiconductor yield improvement : results and best practices. Semiconductor Manufacturing, IEEE Transactions on, 8(2), 103-109. https://doi.org/10.1109/66.382273
  9. Hastie, T., Friedman, J., and Tibshirani, R. (2009), The elements of statistical learning, 2(1), Springer, New York.
  10. Hsu, S. and Chien, C. (2007), Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing, International Journal of Production Economics, 107(1), 88-103. https://doi.org/10.1016/j.ijpe.2006.05.015
  11. James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013), An introduction to statistical learning, Springer, New York.
  12. Kang, J. and Kim, S. (2011), Bootstrap-Based Fault Identification Method, Journal of Korean Society for Quality Management, 39(2), 234-244.
  13. Kang, P. and Cho, S. (2006), EUS SVMs : Ensemble of under-sampled SVMs for data imbalance problems, In Neural Information Processing, 4232, 837-846.
  14. Kim, K. and Baek, J. (2014), A prediction of chip quality using OPTICS (Ordering Points to Identify the Clustering Structure)-based feature extraction at the cell level, Journal of the Korean Institute of Industrial Engineers, 40(2), 151-160. https://doi.org/10.7232/JKIIE.2014.40.2.151
  15. Kim, S. B., Chen, V. C., Park, Y., Ziegler, T. R., and Jones, D. P. (2008), Controlling the false discovery rate for feature selection in high-resolution NMR Spectra, Statistical Analysis and Data Mining, 1(2), 57-66. https://doi.org/10.1002/sam.10005
  16. Kubat, M. and Matwin, S. (1997), Addressing the curse of imbalanced training sets : one sided selection, In Proceedings of the Fourteenth International Conference on Machine Learning, 179-186.
  17. Kumar, N., Kennedy, K., Gildersleeve, K., Abelson, R., Mastrangelo, C. M., and Montgomery, D. C. (2006), A review of yield modelling techniques for semiconductor manufacturing, International Journal of Production Research, 44(23), 5019-5036. https://doi.org/10.1080/00207540600596874
  18. Shmueli, G., Patel, N., and Bruce, P. (2010), Data Mining for Business Intelligence : Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner, 2, Wiley, New York.
  19. Solberg, A. and Solberg, R. (1996), A large-scale evaluation of features for automatic detection of oil spills in ERS SAR images, In International Geoscience and Remote Sensing Symposium, 1484-1486.
  20. Suh, J. H. and Lee, C. G. (2002), Redundancy analysis simulation for EDS process, Journal of the Korea society for simulation, 11(3), 49-58.
  21. Tan, P., Steinbach, M., and Kumar, V. (2006), Introduction to data mining, 1, Addison Wesley.
  22. Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (1993), Probability and statistics for engineers and scientists, 5, Macmillan, New York.
  23. Yoon, H. W. (2014.01.20), Korea Semiconductor market share overtake Japan in thirty years, Seoul Economic Daily.