DOI QR코드

DOI QR Code

송곳니구름버섯을 이용한 볏짚에서의 에탄올 생산

Bioethanol Production from Rice straw by Irpex consors

  • 투고 : 2015.06.08
  • 심사 : 2015.06.25
  • 발행 : 2015.06.30

초록

본 연구는 한국에서 분리한 송곳니구름버섯 (Irpex consors) 균사체의 에탄올 생산 가능성을 탐색하기 위해 수행되었다. 송곳니구름버섯의 균사체를 당이 함유된 배지에 접종하여 에탄올 생산량을 측정하였다. 포도당, 만노오스, 자일로스 등 단당류와 셀로비오스 등의 이당류가 각각 1 g 함유된 발효배지에 송곳니구름버섯의 균사체를 접종하고 배양한 결과 각각의 이들 당류에서 0.23, 0.19. 0.21, 0.17 g의 에탄올이 생산되었다. 또한 볏짚을 열수, 3% 가성소다, 3% 황산용액으로 각각 전 처리한 후 송곳니구름버섯의 균사체를 접종하고 배양한 결과 1 g의 볏짚은 각각 0.12, 0.15, 0.19 g의 에탄올로 전환되었다. 본 실험을 통해 송곳니구름버섯의 균사체는 여러 종류의 환원당을 이용해 에탄올을 생산할 수 있는 것은 물론 열수, 가성소다 및 황산으로 전 처리한 볏짚을 에탄올로 전환하는 것도 가능한 것으로 나타났다. 따라서 송곳니구름버섯 균사체의 에탄올 생산 수율을 본 실험의 결과 보다 높일 수 있다면 당류뿐 만아니라 볏짚을 비롯한 리그닌셀룰로오스의 바이오매스를 이용해 바이오에탄올을 효율적으로 생산해 우리나라 에너지 수요를 자급하는데 큰 기여를 할 수 있을 것으로 사료된다.

This study was initiated to evaluate ethanol production by a Korean isolate of white rot fungus Irpex consors. It was found that the fungus could produce ethanol by converting glucose, mannose, xylose, and cellobiose under semi-aerobic condition with yields of 0.23, 0.19, 0.21, and 0.17 g ethanol per g sugars, respectively. Furthermore, the strain produced ethanol by simultaneous saccharification and fermentation of rice straw treated with steam pressured boiling water, 3% NaOH, and 3% $H_2SO_4$ with maximum yields of 0.12, 0.15, and 0.19 g ethanol per g rice straw, respectively. These results suggested that I. consors could produce ethanol from the components of cellulose and hemicellulose including glucose, mannose, xylose, cellobiose as well as rice straw treated with steam pressured boiling water, dilute sodium hydroxide, and dilute sulfuric acid. This is the first report that I. consors mycelia produce ethanol from various sugars and lignocellulosic substance including rice straw.

키워드

참고문헌

  1. Aristidou A, Penttila M. 2000. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol. 11:187-198. https://doi.org/10.1016/S0958-1669(00)00085-9
  2. Berndes G, Hoogwijk M, van den Broek R. 2003. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1-28. https://doi.org/10.1016/S0961-9534(02)00185-X
  3. Binod P, Sindhu R, Singhania R, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A. 2010. Bioethanol production from rice straw: An overview. Bioresour Technol. 101(13):4767-4774. https://doi.org/10.1016/j.biortech.2009.10.079
  4. Jeffries TW, Jin YS. 2000. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol. 47:221-268. https://doi.org/10.1016/S0065-2164(00)47006-1
  5. Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R. 2012. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol. 112:137-142. https://doi.org/10.1016/j.biortech.2012.02.109
  6. Karimi K, Emtiazi G, Taherzadeh MJ. 2006. Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by Mucor indicus. Process Biochem. 41:653-658. https://doi.org/10.1016/j.procbio.2005.08.014
  7. Kumar R, Wyman CE. 2009. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog. 25:302-314. https://doi.org/10.1002/btpr.102
  8. Lee SB, Jung SK, Lee JD. 2010. Production of rice straw based cellulosic ethanol using acidic saccharification. Appl Chem Eng. 21(3):349-352.
  9. Liang X, Hua D, Wang Z, Zhang J, Zhao Y, Xu H, Li Y, Gao M, Zhang X. 2013. Production of bioethanol using lignocellulosic hydrolysate by the white rot fungus Hohenbuehelia sp. ZW-16. Ann Microbiol. 2013. 63:719-723. https://doi.org/10.1007/s13213-012-0524-6
  10. Marsden WL, Gray PP, Nippard GJ, Quinlan MR. 1982. Evaluation of the DNS method for analyzing lignocelluosic hydrolysates. J Chem Tech Biotechnol. 32:1016-1022.
  11. Nigam JN. 2001. Ehanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol. 87:17-27. https://doi.org/10.1016/S0168-1656(00)00385-0
  12. Okamoto K, Imashiro K, Akizawa Y, Onimura A, Yoneda M, Nitta Y, Maekawa N, Yanase H. 2010. Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens. Biotechnol Lett. 32:909-913. https://doi.org/10.1007/s10529-010-0243-7
  13. Okamoto K, Nitta Y, Maekawa N, Yanase H. 2011. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme Microb Technol. 48:273-277. https://doi.org/10.1016/j.enzmictec.2010.12.001
  14. Okamoto K, Kanawaku R, Matsumoto M, Yanase H. 2012. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus. Enzyme Microb Technol. 50(2):96-100. https://doi.org/10.1016/j.enzmictec.2011.10.002
  15. Okamoto K, Uchii A, Kanawaku R, Yanase H. 2014. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. SpringerPlus 3:121. https://doi.org/10.1186/2193-1801-3-121
  16. Park WH, Lee JH. 2011. New wild fugi in Korea. Kyohak Publishing Co., Seoul Korea.
  17. Roberto IC, Mussatto SI, Rodrigues RCLB. 2003. Diluteacid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 7:171-176.
  18. Tanimura A, Nakamura T, Watanabe I, Ogawa J, Shima J. 2012. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature SpringerPlus. 1:127.