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Abstract

In mathematical statistics education, we can use mutual information as a tool for
evaluating the degree of dependency between two random variables. The ordinary cor-
relation coefficient provides information only on linear dependency, not on nonlinear
relationship between two random variables if any. In this paper as a measure of the
degree of dependency between random variables, we suggest the use of symmetric un-
certainty and λ which are defined in terms of mutual information. They can be also
considered as generalized correlation coefficients for both linear and non-linear depen-
dence of random variables.
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1. Introduction

A lot of attention has been given to the mutual information as interdisciplinary subjects
- see Wu et al. (2009), Vretos et al. (2011), Gomez-Verdejo et al. (2012) and Zeng et al.
(2012). In probability and information theory, mutual information is defined as a measure
of the amount of information that one random variable contains about another random
variable. When two random variables X and Y have a joint probability distribution f(x, y)
and marginal probability functions fX(x) and fY (y), respectively, Cover and Thomas (1991)
defines the mutual information MI(X,Y ) as the relative entropy between the joint distribu-
tion f(x, y) and the product of marginal distributions fX(x)fY (y), i.e.,

MI(X,Y ) =


∫∫

f(x, y) log
(

f(x,y)
fX(x)fY (y)

)
dxdy if continuous∑

x

∑
y f(x, y) log

(
f(x,y)

fX(x)fY (y)

)
if discrete.

(1.1)

Since the entropy is a measure of uncertainty of a random variable, the mutual information
MI(X,Y ) can be considered as the reduction in the uncertainty of one random variable by
the knowledge of the other random variable.
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Let the joint entropy of two random variables X and Y with joint distribution f(x, y) be
defined as H(X,Y ) = −E[log f(X,Y )]. The mutual information can be rewritten as

MI(X,Y ) = H(X) +H(Y )−H(X,Y ), (1.2)

where H(X) and H(Y ) are the marginal entropies of X and Y respectively. The mutual
information has nonnegative value, i.e., MI(X,Y ) ≥ 0. If MI(X,Y ) = 0, two random vari-
ables are independent and otherwise they are dependent. There have been proposed several
normalized variations of mutual information for various needs. We consider the use of the
symmetric uncertainty (SU) by Witten and Frank (2005), and the global correlation coeffi-
cient λ by Darbellay (1998), defined respectively by

SU(X,Y ) = 2

(
MI(X,Y )

H(X) +H(Y )

)
and λ =

√
1− e−2MI(X,Y ). (1.3)

Since MI(X,Y ) = H(X) +H(Y )−H(X,Y ), we know that they are normalized, i.e.,

0 ≤ SU(X,Y ) ≤ 1 and 0 ≤ λ ≤ 1. (1.4)

When two random variables are independent, SU (or λ) is equal to zero, while the degree
of dependency becomes high as they get close to one. With SU (or λ) equal to one, we can
predict exactly one random variable from the other. This motivates the use of symmetric un-
certainty or λ as generalized correlation coefficients for evaluating the degree of dependence
which can not be guessed with ordinary correlation coefficients.

In section 2 we apply the measures for various quantitative variables of both continuous
and discrete random variables as well. Section 3 has the same computations for the simulated
sample data, section 4 has for categorical data and the final section summarizes the study.

2. Quantitative variables

Let f(x, y) denote the joint probability density function of random variables X and Y , and
fX(x) and fY (y) the marginal probability density functions of X and Y respectively. The
random variables X and Y with respective supports X and Y are said to be independent if

f(x, y) = fX(x)fY (y) for all x ∈ X , y ∈ Y. (2.1)

If the equality does not hold, two random variables are said to be dependent. The defi-
nition, however, does not yield any information about the degree of dependence when they
are dependent. It is common to use correlation coefficient to measure the relationship be-
tween two random variables. But the correlation coefficient tells only the degree of linear
dependency between them.

When two variables are independent, the resulting correlation coefficient is zero. But
the converse is not true because the correlation coefficient detects only linear dependency
between two variables. Suppose random variable X has a distribution symmetric about zero,
and consider Y = X2. The random variable Y is completely determined by the random
variable X, thus X and Y are perfectly dependent. But the correlation coefficient of X and
Y is zero.
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The following examples show the degree of dependency for dependent random variables
using the measure symmetric uncertainty SU or λ.

Example 2.1 We consider two random variables X and Y with the joint probability density
function

f(x, y) =
1

2
e−y, −y ≤ x ≤ y, 0 ≤ y ≤ ∞.

The marginal probability density functions of X and Y are fX(x) = 1
2e
−|x| and fY (y) =

ye−y, respectively. The 3D surface plot and the contour plot of the joint probability density
function are shown in Figure 2.1. The correlation coefficient of X and Y is zero, which
implies no linear relationship between the two variables. But the fact the equation (2.1)
does not hold for two variables implies they are dependent. Using mutual information we
can guess how much they are dependent. We have MI(X,Y ) = 0.5772, SU(X,Y ) = 0.7319,
and λ = 0.8275, implying strong nonlinear dependency between them.

Figure 2.1 Surface and contour plot of the joint probability density function in example 2.1

Example 2.2 Suppose we have random variables X and Y with the joint probability
density function f(x, y), defined by

f(x, y) = (1 + α)− 2α(x+ y − 2xy),

where |α| ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The marginal probability density functions of X and
Y are fX(x) = 1 and fY (y) = 1, respectively. When α = 0, the joint probability density
function is the same as bivariate uniform density function.

Figure 2.2 Surface and contour plot of joint pdf in example 2.2 with α = 1
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In Figure 2.2 we show the 3D surface plot and the contour plot of the joint probability
density function corresponding to α = 1. The correlation coefficient ρ is α/3 and the mutual
information is

MI(X,Y ) =
aα2 + bα+ c

8α
,

where

a = log(1 + α)− log(1− α),

b = 4 log(1 + α) + 4 log(1− α)− 10,

c = 3 log(1 + α)− 3 log(1− α)− 2dilog(1 + α) + 2dilog(1 + α),

dilog(x) =

∫ x

1

log(t)/(1− t)dt.

The plots of correlation coefficient, mutual information, and λ for various α values are
shown in Figure 2.3. We have an interesting feature that |ρ| ≈ λ. When α = 0, all the values
of correlation coefficient, mutual information, and λ are zero. Also random variables X and
Y are independent by the definition of equation (2.1).

Figure 2.3 Plots of correlation, mutual information, and λ with varying α in example 2.3

Example 2.3 Let X and Y have the joint probability mass function described by the
following table:

Y \X -1 0 1 total
0 0 1/3 0 1/3
1 1/3 0 1/3 2/3

total 1/3 1/3 1/3 1
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The correlation coefficient of X and Y is zero, which implies that there is no linear rela-
tionship between the two variables. However they are dependent since the equation (2.1)
does not hold. As a measure of the degree of dependence, we have MI(X,Y ) = 0.6365,
SU(X,Y ) = 0.7337 and λ = 0.8485, implying strong nonlinear dependency between them.

Example 2.4 Consider an experiment of rolling a die and tossing a coin. Let X denote the
appeared number of the die. We define an indicator variable whose value is one for head and
zero for tail when tossing the coin. Let the random variable Y be the sum of the number of
the die and the value of the indicator variable. Then we have the following joint probability
mass function of X and Y :

X\Y 1 2 3 4 5 6 7 total
1 1/12 1/12 0 0 0 0 0 1/6
2 0 1/12 1/12 0 0 0 0 1/6
3 0 0 1/12 1/12 0 0 0 1/6
4 0 0 0 1/12 1/12 0 0 1/6
5 0 0 0 0 1/12 1/12 0 1/6
6 0 0 0 0 0 1/12 1/12 1/6

total 1/12 1/6 1/6 1/6 1/6 1/6 1/12 1

The random variables X and Y have correlation coefficient 0.9597, implying strong pos-
itive correlation. We also have MI(X,Y ) = 1.2141, SU(X,Y ) = 0.6565, and λ = 0.9549,
specifically ρ almost equal to λ.

Example 2.5 Let the random variables X and Y follow bivariate normal distribution with
respective variance σ2

X , σ2
Y and correlation coefficient ρ. Then

H(X) =
1

2
log(2π) + log σX +

1

2
,

H(Y ) =
1

2
log(2π) + log σY +

1

2
,

MI(X,Y ) = −1

2
log(1− ρ2).

Therefore we have

SU(X,Y ) =
− log

√
1− ρ2

log(2πe) + log(σXσY )
, and λ = |ρ|.

Example 2.6 Block and Basu (1974) proposed an absolutely continuous bivariate exponen-
tial distribution given by

f(x, y) =


µ1µ(µ2+µ12)

µ1µ2
exp{−µ1x− (µ2 + µ12)y} if x < y

µ2µ(µ1+µ12)
µ1µ2

exp{−(µ1 + µ12)x− µ2y} if x > y

(2.2)

where x > 0, y > 0 and µ1, µ2, µ12 and µ are parameters satisfying µ1 > 0, µ2 > 0, µ12 > 0
and µ = µ1 +µ2 +µ12. The distributions of X and Y are independent if and only if µ12 = 0,
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and if µ1 = µ2, the marginal distributions of X and Y are identical. The individual entropies
and mutual information are given respectively by

H(X) = −lnµ− ln

(
µ2 + µ12

µ1 + µ2

)
+ (µ1 + µ2)

[
1

µ1 + µ12
+

µ2µ12

µ(µ1 + µ2)(µ1 + µ12)

]
+

∞∑
k=1

1

k

(
µ12

µ1 + µ12

)k
M(−kµ2),

H(Y ) = −lnµ− ln

(
µ1 + µ12

µ1 + µ2

)
+ (µ1 + µ2)

[
1

µ2 + µ12
+

µ1µ12

µ(µ1 + µ2)(µ2 + µ12)

]
+

∞∑
k=1

1

k

(
µ12

µ2 + µ12

)k
M(−kµ1),

MI(X,Y ) =
µ ln a+ µ2 ln b

µ1 + µ2
− lnµ− ln

(
µ1 + µ12

µ1 + µ2

)
− ln

(
µ2 + µ12

µ1 + µ2

)
+
µ12

λ

−
∞∑
k=1

1

k

(
µ12

µ2 + µ12

)k
M(−kµ1)−

∞∑
k=1

1

k

(
µ12

µ1 + µ12

)k
M(−kµ2),

where

M(t) = E(etX) =
1

µ1 + µ12
· µ

µ− t

[
µ2 +

µ1(µ2 + µ12)

µ2 + µ12 − t

]
.

If µ1 = µ2 = µ0 and µ12 = δµ0 , then

MI(X,Y ) = − ln{(1 + δ)(1 + δ/2)}+
δ

δ + 2
+M0(δ),

where

M0(δ) = 2

∞∑
k=1

1

k

(
δ

1 + δ

)k
(2 + δ)(2 + 2δ − k)

(1 + δ)(2 + δ − k)(1 + δ − k)
.

It is evident that MI(X,Y ) depends only on δ and is equal to zero if δ = 0 and MI(X,Y )
increases as δ gets increased. And the resulting SU(X,Y ) is computed by the definition.

Example 2.7 Suppose we have generalized Gumbel’s bivariate logistic (GGBL) distribu-
tion, which was first introduced by Gumbel (1961). The joint probability density function
of GGBL distribution is given by

f(x, y) =
m(m+ 1)e−x−y

(1 + e−x + e−y)m+2

where −∞ < x, y <∞ and m > 0. We have the individual entropies and MI as follows:

H(X) = H(Y ) = − lnm+ Ψ(m) + c+
m+ 1

m
,

MI(X,Y ) = ln(m+ 1)− lnm+
1

m+ 1
,

where Ψ(m) = Γ′(m)/Γ(m), the digamma function and c = −Ψ(1), the Euler’s constant.
We know that the mutual information decreases monotonically to zero as m increases to∞.
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3. Sample correlation coefficient

Given n pairs of observations (xi, yi), i = 1, 2 · · · , n, we use sample correlation coefficient
as an estimate of the population correlation coefficient. The sample correlation coefficient
gives information only about linearity between two variables, nothing about nonlinearity.
We can, however, use symmetric uncertainty or λ using mutual information to guess the
amount of dependency in case of nonlinear relationship.

In computing mutual information it is required to know the joint pdf f(x, y), and the
marginal pdfs fX(x) and fY (y). Unless we have any idea of their specific forms, we esti-
mate the functions with popular two approaches - bivariate histogram and bivariate kernel
estimator. There are two methods for the bivariate histogram approaches such as equidis-
tant cells and equiprobable cells. For more on estimation of mutual information, see Dar-
bellay (1999), Darbellay and Vajda (1999), Harrold et al. (2001), Chelikani et al. (2003),
Kraskov et al. (2004) and Zhou et al. (2005). The following example shows the MI compu-
tation using the estimate of bivariate histogram.

Example 3.1 The correlation coefficients of the data with two scatter plots (a) and (b)
at Figure 3.1 are 0.029 and 0.077 respectively. They are close to zero, and have no linear
relationship between two variables. However the plot (a) shows the curve y = x2 and the
plot (b) the circle x2 + y2 = 1. The nonlinear relationship in the plots is not uncovered by
the sample correlation coefficients. Using the bivariate histogram estimates for the two data
sets, we have 1.279 and 0.631 respectively as estimates of the mutual information. They
yield 0.961 and 0.847 as the values of λ, respectively, for the two scatter plots, which implies
the existence of strong nonlinear relationship.

(a) (b)

Figure 3.1 Scatter plot for non-linear relationship in example 3.1

4. Categorical variables

When we consider categorical variables, we get an estimate of mutual information using
the contingency table as follows:

M̂I(X,Y ) =
∑
i

∑
j

nij
n

log

(
nijn

ni+n+j

)
, (4.1)
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where n is the total number of observations, nij the number of individuals in the cell of
the ith category of the variable X and the jth category of the variable Y , ni+ the number
of individuals among the n sampled falling into the category i of variable X, and n+j the
number of individuals among the n sampled falling into the category j of variable Y .

As measures of association between two classification variables, we mainly use statistics
such as chi-square test statistic, likelihood chi-square test statistic, and Mantel-Haenszel test
statistic. Additionally symmetric uncertainty and λ can also be used.

Example 4.1 Table 4.1 is a two-way table summarizing the number of persons convicted
of drunkenness in two London courts during the first six months of 1970 (Hand et al., 1994).

Table 4.1 The number of persons convicted of drunkenness in two London courts

Gender \ Age 0-29 30-39 40-49 50-59 ≥ 60 total
Male 185 207 260 180 71 903

Female 4 13 10 7 10 44
total 189 220 270 187 81 947

Table 4.2 shows some of test results for the data in Table 4.1. The p-values of each
test procedure tell significant association between two variables. The value of λ by mutual
information agrees with the results, giving information about the degree of dependency.

Table 4.2 Test results for the data in example 4.1

Statistics DF Value P-value
Chi-Square 4 15.2461 0.0042

Likelihood Ratio Chi-Square 4 12.6670 0.0130
Mantel-Haenszel Chi-Square 1 4.8961 0.0269

Phi Coefficient 0.1269
Contingency Coefficient 0.1259

Cramer’s V 0.1269
Mutual Information 0.0067

λ 0.1153

5. Concluding Remarks

The ordinary correlation coefficient provides information only about linear dependency,
not about nonlinear relationship between two random variables if any. In this paper as a mea-
sure for evaluating the degree of dependency between variables, we have suggested symmetric
uncertainty or λ using mutual information. They are considered as generalized correlation
coefficients for both linear and non-linear dependence between two random variables.
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