DOI QR코드

DOI QR Code

The Micostructural Change During the Mylonitzation of Cheongsan Granite, Korea

청산화강암의 압쇄암화작용 동안에 미구조 변화

  • Kang, Ji-Hoon (Department of Earth and Environmental Sciences, Andong National University)
  • 강지훈 (안동대학교 지구환경과학과)
  • Received : 2015.06.08
  • Accepted : 2015.06.22
  • Published : 2015.06.30

Abstract

Rock structural and microstructural analyses on the deformed Cheongsan granite, which is characterized by abundant feldspar megacrystals, have been carried out to understand the microstructural change during the mylonitization by ductile shear deformation. In K-feldspars, the characteristic microstructures are recognized as microkinks, microfractures, myrmekites, flame perthites, and core-and-mantle structures without the development of subgrains in outer core-zone. Microkinks are observed in both the microfractured and unmicrofractured K-feldspars and the directions of their axes are generally extended across the adjacent K-feldspar fragments bounded by microfractures. Myrmekites and flame perthites are found on the strain-localized boundaries of the microfractured K-feldspars. In plagiclases, microfractures, deformation twins and kink bands are predominant. Grain size reduction of plagioclase megacrysts also occurs by microfracturing but the core-and-mantle structures like the case of K-feldspars are uncommon in the microfractured plagioclases. The deformation twins, which overlap the igneous zoning structures, are often found in less deformed rocks. The twin lamellae in more deformed rocks generally bisect the obtuse angles of conjugate kink-band boundaries, and are microfractured or microfaulted and randomly oriented. From such characteristic microstructures, thus, it can be suggested that the micostructures during the mylonitzation of Cheongsan granite was developed as follows: production of microkinks in the K-feldspar megacrysts and of deformation twins and kink bands in the plagioclase megacrysts, and then grain-size reduction of the feldspar megacrysts through microfracturing, and then production of core-and-mantle structures (grain-size reduction of the microfractured K-feldspars through grain boundary migration), myrmekites and flame perthites in the microfractured K-feldspars.

거정 장석반정을 다량 함유하는 청산화강암이 연성전단변형을 받아 압쇄암화되는 동안에 일어난 미구조 변화를 파악하기 위해 변형된 청산화강암의 암석구조와 미구조 연구를 수행하였다. K-장석에서 특징적인 미구조는 미세킹크, 미세단열, 밀메카이트, 플레임 퍼어사이트, 코아 외부에 아입자 발달이 없는 코아-맨틀구조 등으로 인지된다. 미세킹크는 미세 단열되거나 미단열된 K-장석들에서 모두 관찰되고, 미세킹크의 축 방향은 미세단열에 의해 경계져 있는 양쪽 K-장석으로 연장된다. 밀메카이트와 플레임 퍼어사이트는 미세 단열된 K-장석들의 입계에 고 변형량의 집중으로 발달한다. 사장석에는 미세단열, 변형쌍정, 킹크대 등이 우세하게 관찰된다. 거정 사장석 반정의 입도 세립화는 역시 미세단열작용에 의해 진행되었다. 그러나 미세 단열된 K-장석과 달리 미세 단열된 사장석에는 코아-맨틀구조가 관찰되지 않는다. 화성기원의 누대구조를 중첩하는 변형쌍정은 변형정도가 낮은 저 변형암에서 종종 관찰된다. 고 변형암에서 변형쌍정의 엽층들은 일반적으로 공액성 킹크대의 둔각 이등분선 방향으로 발달하고, 미세단열 내지 미세단층 되어 무질서한 배열을 보인다. 따라서 이와 같은 특징적인 미구조로부터 청산화강암의 압쇄암화작용 동안에 미구조는 다음과 같이 발달하였음을 제시한다: 거정 K-장석 반정에 미세킹크의 출현과 사장석에 킹크대와 변형쌍정의 출현, 미세단열작용에 의한 거정 장석반정들의 입도 세립화, 미세 단열된 K-장석에 밀메카이트와 플레임 퍼어사이트 그리고 입계이동 재결정작용에 의한 K-장석 조각들의 입도 세립화와 함께 코아-맨틀구조의 출현.

Keywords

References

  1. Arzi, A.A., 1978, Critical phenomena in the rheology of partially melted rocks. Tectonophysics, 44, 173-184. https://doi.org/10.1016/0040-1951(78)90069-0
  2. Cheong, C.-S. and Chang, H.-W., 1996, Tectono-magmatism, -metamorphism, and -mineralization of the central Ogcheon belt, Korea (I) : Sr, Nd and Pb isotopic systematics and geochemistry of granitic rocks in the Boeun area. Jour. Geol. Soc. Korea, 32, 91-116 (in Korean with English abstract).
  3. Cheong, C.-S. and Chang, H.-W., 1997, Sr, Nb, Pb isotope systematics of granitic rocks in the central Ogcheon Belt, Korea. Geochem. Jour., 31, 17-36. https://doi.org/10.2343/geochemj.31.17
  4. Choo, S.H and Kim, S.J., 1985, Rb-Sr isotopic dating of Ryeongnam Massif: The granitic gneisses and granite from Pyeonghae, Puncheon and Keum-Reung area (in Research Report of Korea Institute of Energy and Resource). Korea Institute of Energy and Resource, KR-85-24, 7-39 (in Korean with English abstract).
  5. Davis, G.H. and Reynolds, S.J., 1996, Structural geology of rocks and regions (2nd ed.). John Wiley and Sons. Inc., 776p.
  6. Debat, P., Soula, J.C., Kubin, L. and Vidal, J.L., 1978, Optical studies of natural deformation microstructures in feldspars (gneiss and pegmatites from Occitania, Southern France). Lithos, 28, 133-145.
  7. Drury, M.R. and Urai, J.L., 1990, Deformation-related recrystallisation processes. Tectonophysics, 172, 235-253. https://doi.org/10.1016/0040-1951(90)90033-5
  8. Eggleton, R.A. and Buseck, P.R., 1980, The orthoclasemicrocline inversion: a high-resolution transmission electron microscope study and strain analysis. Contr. Miner. Petrol., 74, 123-133. https://doi.org/10.1007/BF01131998
  9. Gapais, D., 1989, Shear structures within deformed granites: mechanical and thermal indicators. Geology, 17, 1144-1147. https://doi.org/10.1130/0091-7613(1989)017<1144:SSWDGM>2.3.CO;2
  10. Gapais, D. and Barbarin, B., 1986, Quartz fabric transition in a cooling syntectonic granite (Hermitage Massif, France). Tectonophysics, 125, 357-370. https://doi.org/10.1016/0040-1951(86)90171-X
  11. Guineberteau, B., Bouchez, J.-L. and Vigneresse, J.-L., 1987, The Montagne granite pluton (France) emplaced by pullapart along a shear zone: structural and gravimetric arguments and regional implication. Bull. Geol. Soc. Amer., 99, 763-770. https://doi.org/10.1130/0016-7606(1987)99<763:TMGPFE>2.0.CO;2
  12. Hara, I., Sakurai, Y., Arita, S. and Paulitsch, P., 1980, Distribution pattern of quartz in granites: Evidence of their high-temperature deformation during cooling. Neues Jahrbuch fr Mineralogie Abhandlungen, 20-30.
  13. Hibbard, M.J., 1987, Deformation of incompletely crystallized magma systems: granitic gneisses and their tectonic implications. Jour. Geol., 93, 543-561.
  14. Kang, J.-H., 1998, The temperature condition for the mylonitization of the Cheongsan granite, Korea -Structural analysis of the deformed Cheongsan granite, Korea-. Jour. Petrol. Soc. Korea, 7, 53-68 (in Korean with English abstract).
  15. Kang, J.-H. and Lee, C.G., 2002, Geological structure of Okcheon Metamorphic Zone in the Miwon-Boeun area, Korea. Jour. Petrol. Soc. Korea, 11, 234-249 (in Korean with English abstract).
  16. Kim, D.-H., Chang, T.-W., Kim, W.-Y. and Hwang, J.-H., 1978, Geological report of the Ogcheon sheet (1: 50,000). Korea Research Institute of Geoscience and Mineral Resources, 21p (in Korean with English abstract).
  17. Kim, D.-H. and Lee, B.-J., 1986, Geological report of the Cheongsan sheet(1: 50,000). Korea Institute of Energy and Resources, 20p (in Korean with English abstract).
  18. Kim, K.-B. and Hwang, J.-H., 1986, Geological report of the Yeongdong sheet (1: 50,000). Korea Institute of Energy and Resources, 24p (in Korean with English abstract).
  19. Kim, O.-J., Lee, D.-S. and Lee, H.-Y., 1977, Geological report of the Boeun sheet(1: 50,000). Korea Research Institute of Geoscience and Mineral Resources, 35p (in Korean with English abstract).
  20. Kwon, S.H., Park, Y.D., Park, C.S. and Kim, H.J., 1997, Microstructural, mineralogical and chemical changes during ductile deformation of the Cheongsan granite. In Tectonic Evolution of Eastern Asian Continent (eds. Lee, Y.I. and Kim, J.H.), Geol. Soc. Korea 50th Anniv. Int'l Symp., 195-200.
  21. Lapworth, C., 1885, The highland controversy in British geology; its causes, course and consequences. Nature, 32, 558-559.
  22. Lee, D.S., 1971, Study on the igneous activity in the middle Ogcheon geosynclinal zone, Korea. Jour. Geol. Soc. Korea, 7, 153-216.
  23. Lister, G.S. and Snoke, A.W., 1984, S-C mylonite. Jour. Struct. Geol., 6, 617-638. https://doi.org/10.1016/0191-8141(84)90001-4
  24. Passchier, C.W., 1982, Mylonitic deformation in the Saint-Barthe'lemy Massif, French Pyrenees, with emphasis on the genetic relationship between ultramylonite and pseudotachylyte. GUA. pap. Geol. Ser., 1, 16, 167-176.
  25. Passchier, C.W. and Trouw, R.A.J., 1996, Microtectonics. Springer-Verlag Berlin Heidelberg New York, 289p.
  26. Paterson, S.R., Vernon, R.H. and Tobisch, O.T., 1989, A review of criteria for the identification of magmatic and tectonic foliations in granitoids. Jour. Struct. Geol., 11, 349-363. https://doi.org/10.1016/0191-8141(89)90074-6
  27. Pryer, L.L., 1993, Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. Jour. Struct. Geol., 15, 21-36. https://doi.org/10.1016/0191-8141(93)90076-M
  28. Ree, J.-H., Kwon, S.-H., Park, Y., Kwon, S.-T. and Park, S.-H., 2001, Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting. Tectonics, 20, 850-867. https://doi.org/10.1029/2000TC001267
  29. Sagong, H. and Jwa, Y.-J., 1997, Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area. Jour. Petrol. Soc. Korea, 6, 185-209 (in Korean with English abstract).
  30. Simpson, C., 1985, Deformation of granitic rocks across the brittle-ductile transition. Jour. Struct. Geol., 7, 503-511. https://doi.org/10.1016/0191-8141(85)90023-9
  31. Tullis, J., 1983, Deformation of feldspars. In: Feldspar Mineralogy (ed. Ribbe, P.H.), Miner. Soc. Amer., short course notes, 2 (2nd ed.), 297-323.
  32. Tullis, J., Dell'Angelo, L. and Yund, R.A., 1990, Ductile shear zones from brittle precursors in feldspathic rocks: the role of dynamic recrystallization. In Mineral and rock deformation: laboratory studies (eds. Hobbs, B.E. and Heard, H.C.), AGU, Geophys. Monogr., 56, 67-81.
  33. Tullis, J. and Yund, R.A., 1977, Experimental deformation of dry Westerly granite. Jour. Geophys. Res., 82, 5705-5718. https://doi.org/10.1029/JB082i036p05705
  34. Tullis, J. and Yund, R.A., 1980, Hydrolitic weakening of experimentally deformed Westerly granite and Hale albite rock. Jour. Struct. Geol., 2, 439-451. https://doi.org/10.1016/0191-8141(80)90005-X
  35. Tullis, J. and Yund, R.A., 1987, Transition from cataclastic flow to dislocation creep of feldspar: mechanisms and microstructures. Geology, 15, 606-609. https://doi.org/10.1130/0091-7613(1987)15<606:TFCFTD>2.0.CO;2
  36. Tullis, J. and Yund, R.A., 1991, Diffusion creep in feldspar aggregates: experimental evidence. Jour. Struct. Geol., 13, 987-1000. https://doi.org/10.1016/0191-8141(91)90051-J
  37. Urai, J.L., 1983, Water assisted dynamic recrystallization and weakening in polycrystalline bischofite. Tectonophysics, 96, 125-157. https://doi.org/10.1016/0040-1951(83)90247-0
  38. van der Molen, I. and Paterson, M.S., 1979, Experimental deformation of partially melted granite. Contr. Miner. Petrol., 70, 299-318. https://doi.org/10.1007/BF00375359
  39. Vidal, J.L., Kubin, L., Debat, P. and Soula, J.L., 1980, Deformation and dynamic recrystallisation of K-feldspar augen in orthogneiss from Montagne Noire, Occitania. Lithos, 13, 247-257. https://doi.org/10.1016/0024-4937(80)90070-5
  40. White, S., 1976, The effects of strain on the microstructures, fabrics, and deformation mechanisms in quartzites. Phil. Trans. R. Soc. Lond. A., 283, 69-86. https://doi.org/10.1098/rsta.1976.0070
  41. Wilson, C.J.L., 1975, Preferred orientation in quartz ribbon mylonites. Bull. Geol. Soc. Amer., 88. 968-974.