DOI QR코드

DOI QR Code

Protective Effects of Silibinin and Its Possible Mechanism of Action in Mice Exposed to Chronic Unpredictable Mild Stress

  • Yan, Wen-Jing (School of Nursing, Xuzhou Medical College) ;
  • Tan, Ying-Chun (School of Nursing, Xuzhou Medical College) ;
  • Xu, Ji-Cheng (School of Nursing, Xuzhou Medical College) ;
  • Tang, Xian-Ping (School of Nursing, Xuzhou Medical College) ;
  • Zhang, Chong (General Surgery of the Affiliated Hospital of Xuzhou Medical College) ;
  • Zhang, Peng-Bo (General Surgery of the Affiliated Hospital of Xuzhou Medical College) ;
  • Ren, Ze-Qiang (General Surgery of the Affiliated Hospital of Xuzhou Medical College)
  • Received : 2014.12.10
  • Accepted : 2015.03.18
  • Published : 2015.05.01

Abstract

Silibinin, a natural flavonoid antioxidant isolated from extracts of the milk thistle herb, has recently been identified as having anti-hepatotoxic and anticancer properties. In this paper, we investigated the effects of silibinin on behavior and neuroplasticity in mice subjected to chronic unpredictable mild stress (CUMS). After 5 consecutive weeks of CUMS, the mice were treated with silibinin (100 mg/kg, 200 mg/kg and 400 mg/kg by oral gavage) for 3 consecutive weeks. The results showed that silibinin administration significantly alleviated the CUMS-induced depressive-like behavior, including the total number of squares crossed and the frequency of rearing in the open field test, the immobility time in the tail suspension test and the forced swimming test. Furthermore, silibinin treatment increased the levels of brain-derived neurotrophic factor (BDNF), serotonin (5-HT) and norepinephrine (NE) in the prefrontal cortex and hippocampus. Our study provides new insight into the protective effects of silibinin on the depressive status of CUMS mice, specifically by improving neuroplasticity and neurotransmission.

Keywords

References

  1. Acheson, A., Conover, J. C., Fandl, J. P., Dechiara, T. M., Russell, M., Thadani, A., Squinto, S. P., Yancopoulos, G. D. and Lindsay, R. M. (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374, 450-453. https://doi.org/10.1038/374450a0
  2. Agarwal, C., Wadhwa, R., Deep, G., Biedermann, D., Gazak, R., Kren, V. and Agarwal, R. (2013) Anti-cancer efficacy of silybin derivatives - a structure-activity relationship. PloS One 8, e60074. https://doi.org/10.1371/journal.pone.0060074
  3. Ahmad, A., Rasheed, N., Banu, N. and Palit, G. (2010) Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress 13, 355-364.
  4. Bekinschtein, P., Cammarota, M., Katche, C., Slipczuk, L., Rossato, J. I., Goldin, A., Izquierdo, I. and Medina, J. H. (2008) BDNF is essential to promote persistence of long-term memory storage. Proc. Natl. Acad. Sci. U.S.A. 105, 2711-2716. https://doi.org/10.1073/pnas.0711863105
  5. Bergami, M. and Berninger, B. (2012) A fight for survival: the challenges faced by a newborn neuron integrating in the adult hippocampus. Dev. Neurobiol. 72, 1016-1031. https://doi.org/10.1002/dneu.22025
  6. Blier, P. and El Mansari, M. (2013) Serotonin and beyond: therapeutics for major depression. Philos. Trans. Soc. Lond. B Biol. Sci. 368, 20120536. https://doi.org/10.1098/rstb.2012.0536
  7. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. and Kelley, K. W. (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46-56. https://doi.org/10.1038/nrn2297
  8. Dwivedi, Y., Rizavi, H. S., Conley, R. R., Roberts, R. C., Tamminga, C. A. and Pandey, G. N. (2003) Altered gene expression of brainderived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch. Gen. Psychiatry 60, 804-815. https://doi.org/10.1001/archpsyc.60.8.804
  9. George, T. P. and O'Malley, S. S. (2004) Current pharmacological treatments for nicotine dependence. Trends. Pharmacol. Sci. 25, 42-48. https://doi.org/10.1016/j.tips.2003.11.003
  10. Grippo, A. J. and Johnson, A. K. (2009) Stress, depression and cardiovascular dysregulation: a review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress 12, 1-21. https://doi.org/10.1080/10253890802046281
  11. Gronli, J., Bramham, C., Murison, R., Kanhema, T., Fiske, E., Bjorvatn, B., Ursin, R. and Portas, C. M. (2006) Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol. Biochem. Behav. 85, 842-849. https://doi.org/10.1016/j.pbb.2006.11.021
  12. Huang, S. J., Zhang, X. H., Wang, Y. Y., Pan, J. H., Cui, H. M., Fang, S. P., Wu, W., Zheng, J., Li, D. J. and Bai, G. (2014) Effects of Kaixin Jieyu Decoction on behavior, monoamine neurotransmitter levels, and serotonin receptor subtype expression in the brain of a rat depression model. Chin. J. Integr. Med. 20, 280-285. https://doi.org/10.1007/s11655-014-1343-0
  13. Kajiyama, Y., Iijima, Y., Chiba, S., Furuta, M., Ninomiya, M., Izumi, A., Shibata, S. and Kunugi, H. (2010) Prednisolone causes anxietyand depression-like behaviors and altered expression of apoptotic genes in mice hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 159-165. https://doi.org/10.1016/j.pnpbp.2009.10.018
  14. Koike, H., Fukumoto, K., Iijima, M. and Chaki, S. (2013) Role of BDNF/ TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression. Behav. Brain Res. 238, 48-52. https://doi.org/10.1016/j.bbr.2012.10.023
  15. Koob, G. F. and Le Moal, M. (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97-129. https://doi.org/10.1016/S0893-133X(00)00195-0
  16. Krishnan, V. and Nestler, E. J. (2011) Animal models of depression: molecular perspectives. Curr. Top. Behav. Neurosci. 7, 121-147. https://doi.org/10.1007/7854_2010_108
  17. La Grange, L., Wang, M., Watkins, R., Ortiz, D., Sanchez, M. E., Konst, J., Lee, C. and Reyes, E. (1999) Protective effects of the flavonoid mixture, silymarin, on fetal rat brain and liver. J. Ethnopharmacol. 65, 53-61. https://doi.org/10.1016/S0378-8741(98)00144-5
  18. Lee, B. H. and Kim, Y. K. (2010) The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig. 7, 231-235. https://doi.org/10.4306/pi.2010.7.4.231
  19. Li, J., Zhang, H., Huang, W., Qian, H. and Li, Y. (2012) TNF-alpha inhibitors with anti-oxidative stress activity from natural products. Curr. Top. Med. Chem. 12, 1408-1421. https://doi.org/10.2174/156802612801784434
  20. Li, J., Zhou, Y., Liu, B. B., Liu, Q., Geng, D., Weng, L. J. and Yi, L. T. (2013) Nobiletin ameliorates the deficits in hippocampal BDNF, TrkB, and synapsin I induced by chronic unpredictable mild stress. Evid. Based Complement. Alternat. Med. 2013, 359682.
  21. Liu, D., Xie, K., Yang, X., Gu, J., Ge, L., Wang, X. and Wang, Z. (2014) Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats. Behav. Brain Res. 264, 9-16. https://doi.org/10.1016/j.bbr.2014.01.039
  22. Lu, P., Mamiya, T., Lu, L., Mouri, A., Ikejima, T., Kim, H. C., Zou, L. B. and Nabeshima, T. (2012) Xanthoceraside attenuates amyloid beta peptide25-35-induced learning and memory impairments in mice. Psychopharmacology (Berl) 219, 181-190. https://doi.org/10.1007/s00213-011-2386-1
  23. Maes, M. (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol. Lett. 29, 287-291.
  24. Maletic, V., Robinson, M., Oakes, T., Iyengar, S., Ball, S. G. and Russell, J. (2007) Neurobiology of depression: an integrated view of key findings. Int. J. Clin. Pract. 61, 2030-2040. https://doi.org/10.1111/j.1742-1241.2007.01602.x
  25. Manzanero, S., Santro, T. and Arumugam, T. V. (2013) Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem. Int. 62, 712-718. https://doi.org/10.1016/j.neuint.2012.11.009
  26. McAllister, A. K., Katz, L. C. and Lo, D. C. (1999) Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295-318. https://doi.org/10.1146/annurev.neuro.22.1.295
  27. Noda, Y., Yamada, K., Furukawa, H. and Nabeshima, T. (1995) Enhancement of immobility in a forced swimming test by subacute or repeated treatment with phencyclidine: a new model of schizophrenia. Br. J. Pharmacol. 116, 2531-2537. https://doi.org/10.1111/j.1476-5381.1995.tb15106.x
  28. Pryce, C. R., Ruedi-Bettschen, D., Dettling, A. C., Weston, A., Russig, H., Ferger, B. and Feldon, J. (2005) Long-term effects of earlylife environmental manipulations in rodents and primates: Potential animal models in depression research. Neurosci. Biobehav. Rev. 29, 649-674. https://doi.org/10.1016/j.neubiorev.2005.03.011
  29. Raison, C. L., Borisov, A. S., Majer, M., Drake, D. F., Pagnoni, G., Woolwine, B. J., Vogt, G. J., Massung, B. and Miller, A. H. (2009) Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol. Psychiatry 65, 296-303. https://doi.org/10.1016/j.biopsych.2008.08.010
  30. Salmon, P. (2001) Effects of physical exercise on anxiety, depression, and sensitivity to stress: a unifying theory. Clin. Psychol. Rev. 21, 33-61. https://doi.org/10.1016/S0272-7358(99)00032-X
  31. Shimizu, E., Hashimoto, K., Okamura, N., Koike, K., Komatsu, N., Kumakiri, C., Nakazato, M., Watanabe, H., Shinoda, N., Okada, S. and Iyo, M. (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry 54, 70-75. https://doi.org/10.1016/S0006-3223(03)00181-1
  32. Shirayama, Y., Chen, A. C., Nakagawa, S., Russell, D. S. and Duman, R. S. (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251-3261.
  33. Souza, C. O., Peracoli, M. T., Weel, I. C., Bannwart, C. F., Romao, M., Nakaira-Takahagi, E., Medeiros, L. T., Silva, M. G. and Peracoli, J. C. (2012) Hepatoprotective and anti-inflammatory effects of silibinin on experimental preeclampsia induced by L-NAME in rats. Life Sci. 91, 159-165. https://doi.org/10.1016/j.lfs.2012.06.036
  34. Steru, L., Chermat, R., Thierry, B. and Simon, P. (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85, 367-370. https://doi.org/10.1007/BF00428203
  35. Stewart, R. A., North, F. M., West, T. M., Sharples, K. J., Simes, R. J., Colquhoun, D. M., White, H. D. and Tonkin, A. M. (2003) Depression and cardiovascular morbidity and mortality: cause or consequence? Eur. Heart J. 24, 2027-2037. https://doi.org/10.1016/j.ehj.2003.08.017
  36. Wang, M. J., Lin, W. W., Chen, H. L., Chang, Y. H., Ou, H. C., Kuo, J. S., Hong, J. S. and Jeng, K. C. G. (2002) Silymarin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity by inhibiting microglia activation. Eur. J. Neurosci. 16, 2103-2112. https://doi.org/10.1046/j.1460-9568.2002.02290.x
  37. Warner-Schmidt, J. L. and Duman, R. S. (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16, 239-249. https://doi.org/10.1002/hipo.20156
  38. Yang, C., Wang, G., Wang, H., Liu, Z. and Wang, X. (2009) Cytoskeletal alterations in rat hippocampus following chronic unpredictable mild stress and re-exposure to acute and chronic unpredictable mild stress. Behav. Brain Res. 205, 518-524. https://doi.org/10.1016/j.bbr.2009.08.008
  39. Young, S. N. (2007) How to increase serotonin in the human brain without drugs. J. Psychiatr. Neurosci. 32, 394-399.
  40. Zhang, Y., Gu, F., Chen, J. and Dong, W. (2010) Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat. Brain Res. 1366, 141-148. https://doi.org/10.1016/j.brainres.2010.09.095

Cited by

  1. Silybin attenuates LPS-induced lung injury in mice by inhibiting NF-κB signaling and NLRP3 activation vol.39, pp.5, 2017, https://doi.org/10.3892/ijmm.2017.2935
  2. Protective effects of flavonoids isolated from Korean milk thistle Cirsium japonicum var. maackii (Maxim.) Matsum on tert -butyl hydroperoxide-induced hepatotoxicity in HepG2 cells vol.209, 2017, https://doi.org/10.1016/j.jep.2017.07.027
  3. Orbitofrontal cortex 5-HT2A receptor mediates chronic stress-induced depressive-like behaviors and alterations of spine density and Kalirin7 vol.109, 2016, https://doi.org/10.1016/j.neuropharm.2016.02.020
  4. Gastrodin reversed the traumatic stress-induced depressed-like symptoms in rats vol.70, pp.4, 2016, https://doi.org/10.1007/s11418-016-1010-4
  5. Cytisine, a Partial Agonist of α4β2 Nicotinic Acetylcholine Receptors, Reduced Unpredictable Chronic Mild Stress-Induced Depression-Like Behaviors vol.24, pp.3, 2016, https://doi.org/10.4062/biomolther.2015.113
  6. Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus vol.179, 2017, https://doi.org/10.1016/j.physbeh.2017.07.023
  7. Paecilomyces tenuipes extract prevents depression-like behaviors in chronic unpredictable mild stress-induced rat model via modulation of neurotransmitters vol.16, pp.2, 2017, https://doi.org/10.3892/mmr.2017.6807
  8. High-Dietary Fiber Intake Alleviates Antenatal Obesity-Induced Postpartum Depression: Roles of Gut Microbiota and Microbial Metabolite Short-chain Fatty Acid Involved vol.68, pp.47, 2015, https://doi.org/10.1021/acs.jafc.0c04290
  9. αCaMKII in the lateral amygdala mediates PTSD-Like behaviors and NMDAR-Dependent LTD vol.15, pp.None, 2015, https://doi.org/10.1016/j.ynstr.2021.100359