DOI QR코드

DOI QR Code

The study on interval calculation of cross passage in undersea tunnel by quantitative risk assesment method

해저철도터널(목포-제주간) 화재시 정량적 위험도 평가기법에 의한 피난연결통로 적정간격산정에 관한 연구

  • Yoo, Ji-Oh (Dep. of Automotive Engineering, Shin-Han University) ;
  • Kim, Jin-Su (Graduate School, Incheon National University) ;
  • Rie, Dong-Ho (Fire Disaster Prevention Research Center, Incheon National University) ;
  • Shin, Hyun-Jun (Fire Research Center, Korea Institute of Construction Technology)
  • Received : 2015.04.07
  • Accepted : 2015.04.21
  • Published : 2015.05.31

Abstract

Quantitative Mokpo-Jeju undersea tunnel is currently on the basis plan for reviewing validation. As for the cross section shape for express boat of 105 km line, sing track two tube is being reviewed as the Euro tunnel equipped with service tunnel. Also, 10 carriage trains have been planned to operate 76 times for one way a day. So, in this study, quantitative risk assessment method is settled, which is intended to review the optimal space between evacuation connection hall of tunnel by quantitative risk analysis method. In addition to this, optimal evacuation connection hall space is calculated by the types of cross section, which are Type 3 (double track single tube), Type 1 (sing track two tube), and Type 2 (separating double track on tube with partition). As a result, cross section of Type 2 is most efficient for securing evacuation safety, and the evacuation connection space is required for 350 m in Type 1, 400 m in Type 2, and 1,500 m in Type3 to satisfy current domestic social risk assessment standard.

현재 목포-제주간 해저터널은 타당성 검토를 위한 기본계획 중에 있으며, 노선의 길이가 108 km인 고속여객 전용선으로 단면형태는 유로터널과 같은 서비스터널을 설치한 단선쌍굴터널로 검토되고 있다. 또한 교통량은 10량 1편성의 열차가 일일 76편/편도 운행하는 것으로 계획하고 있다. 이에 본 연구에서는 터널의 피난연결통로의 적정 간격을 정량적 위험도 평가기법에 의해서 검토하는 것을 목표로 정량적 위험도 평가기법을 정립하였다. 또한 터널의 단면형태를 복선터널(Type 3), 쌍굴터널(Type 1) 및 복선터널을 격벽으로 분리하는 형태의 터널(Type 2)을 대상으로 단면형태별로 적정 피난연결통로 간격을 산정하였다. 본 연구결과, Type 2의 단면이 대피안전확보에 가장 효과적이며, 현행 국내 사회적 위험도 평가기준을 만족하기 위해서는 단면형태별로 350 m (Type 1), 400 m (Type 2), 1,500 m (Type 3)의 피난연결통로 간격이 요구되는 것으로 나타나고 있다.

Keywords

References

  1. Arends, B.J., Jonkman, S.N., Vrijling, J.K. (2005), "Evaluation of tunnel safety: towards an economic safety optimum", Reliability Eng. & system Safety.
  2. IES. (2004), "SIMULEX User Mannual", UK.
  3. John Dalsgaard Sorensen. (2010), "Belastning og sikkerhed", Denmark.
  4. Korea Railroad Research Institute. (2014), "Quantitative risk assessment manual draft", South Korea.
  5. Ministry of Land. (2013), "Railway facilities safety technical standards", South Korea.
  6. NIST. (2010), "Fire dynamics simulator (version 5) technical reference guide", US.
  7. SFPE. (2003), "Emergency movement", Chapter 3-14.
  8. Trbojevic, V.M. (2004), "Risk criteria in EU", Risk support Limited, London, U.K.
  9. Tunnelling and Underground Space Association. (2009), "Ho-Nam railway vehicle fire intensity and quantitative risk assessment(QRA)", South Korea.
  10. Yoo, J.O., Nam, C.H., Jo, H.J., Kim, J.W. (2010), "A study on quantitative risk assessment for railway tunnel fire", Tunneling Technology, Vol. 12, No. 4, pp. 307-319.

Cited by

  1. Evaluation test of applicability of Compressed Air Foam fire extinguishing system for train fire at rescue station in Subsea tunnel vol.18, pp.5, 2016, https://doi.org/10.9711/KTAJ.2016.18.5.413