DOI QR코드

DOI QR Code

체세포배발생에 의한 IbOr 유전자 형질전환 카사바 개발

Development of transgenic cassava plants expressing IbOr gene by somatic embryogenesis

  • 김선하 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 김명덕 (국립한경대학교 유전공학연구소) ;
  • 박성철 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 정재철 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 이행순 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 곽상수 (한국생명공학연구원 식물시스템공학연구센터)
  • Kim, Sun Ha (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Myoung Duck (Institute of Genetic Engineering, Hankyong National University (HNU)) ;
  • Park, Sung-Chul (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jeong, Jae Cheol (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Haeng-Soon (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kwak, Sang-Soo (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2015.03.09
  • 심사 : 2015.03.20
  • 발행 : 2015.06.30

초록

카사바는 열대와 아열대지역 뿌리작물로서 중요한 식량자원일 뿐만 아니라 동물 사료, 전분, 바이오에탄올 등 다양한 산업소재로서 이용이 가능하다. 그러나 카사바의 산업적 중요성에 비해 형질전환기술을 이용한 신품종 개발은 아직까지 제한적이다. 본 연구에서는 인도네시아 IDB사가 개발한 다수확 카사바 품종을 이용하여 영양강화 및 환경스트레스에 저항성을 향상시킨 카사바를 개발하기 위하여 체세포배를 이용한 식물체 재분화시스템을 확립하였다. 카로티노이드 축적에 관련된 IbOr 유전자를 체세포배를 이용한 Agrobacterium 매개방법으로 카사바에 형질전환하였다. gDNA PCR과 RT-PCR을 통해 19개의 형질전환식물체를 성공적으로 확보하였다. 향후 카로티노이드 함량분석, 환경스트레스 내성분석 등을 통하여 IbOr 카사바 식물체의 농업적 유용성을 검정할 예정이다.

Cassava (Manihot esculenta Crantz) is a useful root crop for food, animal feed and various industrial materials including biofuel. Despite of its importance as an industrial crop, the genetic engineering approaches to manipulate transgenic plant development in cassava are limited. In this study, to develop new cultivar with high level of carotenoids and enhanced tolerance to environmental stresses, sweetpotato IbOr gene involved in accumulation of carotenoids was introduced into an Indonesian IDB high-yielding cassava cultivar under the control of oxidative stress-inducible SWPA2 promoter through Agrobacterium-mediated transformation of friable embryogenic calli. The 19 transgenic lines were successfully generated on the basis of gDNA-PCR and IbOr transcript levels for further characterization in terms of carotenoid contents and environmental stresses. Therefore, IbOr transgenic cassava plants may be developed for enhanced biomass production with high levels of carotenoids on marginal lands.

키워드

참고문헌

  1. Adenle AA, Aworh OC, Akromah R, Parayil G (2012) Developing GM super cassava for improved health and food security: future challenges in Africa. Agr Food Sec 1:1-11 https://doi.org/10.1186/2048-7010-1-1
  2. Bull SE, Owiti JA, Niklaus M, Beeching JR, Gruissem W, Vanderschuren H (2009) Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat Protoc 4:1845-1854 https://doi.org/10.1038/nprot.2009.208
  3. Beltran J, Prias M, Al-Babili S, LadinoY, Lopez D, Beyer P, Chavarriaga P, Tohme J (2010) Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava (Manihot esculenta Crantz). Planta 231: 1413-1424 https://doi.org/10.1007/s00425-010-1144-7
  4. Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557-583 https://doi.org/10.1146/annurev.arplant.49.1.557
  5. FAO: FAOSTAT. 2010. http//:faostat.fao.org
  6. Ferreira CF, Alves E, Pestana KN, Junghans DT, Kobayashi AK, de Jesus Santos AK, Silva RP, Silva PH, Soares E, Fukuda W (2008) Molecular characterization of cassava (Manihot esculenta Crantz) with yellow-orange roots for beta-carotene improvement. Crop Breed Appl Biotechnol 8:23-29 https://doi.org/10.12702/1984-7033.v08n01a04
  7. Giuliano G (2014) Plant carotenoids: genomics meets multi-gene engineering. Curr Opin Plant Biol 19:111-117 https://doi.org/10.1016/j.pbi.2014.05.006
  8. Goo YM, Han EH, Jeong JC, Kwak SS, Yu J, Kim YH, Ahn MJ, Lee SW (2015) Overexpression of the sweet potato IbOr gene results in the increased accumulation of carotenoid and confers tolerance to environmental stresses in transgenic potato. C. R. Biologies 338:12-20 https://doi.org/10.1016/j.crvi.2014.10.006
  9. Gresshof P, Doy CH (1974) Derivation of a haploid cell line from Vitis vinifera and importance of stage of meiotic development of anthers for haploid culture of this and other genera. Z Pflanzenphysiol 73:132-141 https://doi.org/10.1016/S0044-328X(74)80084-X
  10. Hillocks RJ, Thresh JM, Bellotti AC (2002) Cassava Biology, Production and Utilization. New York: CABI
  11. Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS (2003) A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol 51:831-838 https://doi.org/10.1023/A:1023045218815
  12. Kim SH, Ahn YO, Ahn MJ, Lee H-S, Kwak SS (2012) Downregulation of ${\beta}$-carotene hydroxylase increases ${\beta}$-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry 74:69-78 https://doi.org/10.1016/j.phytochem.2011.11.003
  13. Kim SH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013) Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiol Bioch 70:445-454 https://doi.org/10.1016/j.plaphy.2013.06.011
  14. Kim YH, Kim MD, Choi YI, Park CH, Yun DJ, Noh EW, Lee HS, Kwak SS (2011) Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnol J 9:334-347 https://doi.org/10.1111/j.1467-7652.2010.00551.x
  15. Lopez C, Jorge V, Piegu B, Mba C, Cortes D, Restrepo S, Soto M, Laudie M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V (2004) A unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol 56:541-554 https://doi.org/10.1007/s11103-004-0123-4
  16. Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Kupper H, Earle ED, Cao J, Li L (2006) The Cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of ${\beta}$-carotene accumulation. Plant Cell 18:3594-3605 https://doi.org/10.1105/tpc.106.046417
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Park SC, Kim SH, Park S, Lee HU, Lee JS, Park WS, Ahn MJ, Kim YH, Jeong JC, Lee HS, Kwak SS (2015) Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar. Plant Physiol Biochem 86:89-90
  19. Welsch R, Arango,J, Bar C,Salazar B, Al-Babilib S, Beltran, Chavarriaga P, Ceballos H, Tohme J, Beyera P (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348-3356 https://doi.org/10.1105/tpc.110.077560
  20. World Health Organization (2009) Global prevalence of vitamin A deficiency in populations at risk 1995-2005. In WHO Global Database on Vitamin A Deficiency. (Geneva, Switzerland: World Health Organization)
  21. Xu J, Yang J, Duan X, Jiang Y, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14:208 https://doi.org/10.1186/s12870-014-0208-4
  22. Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J, Gruissem W (2010) Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol 52(7):653-669 https://doi.org/10.1111/j.1744-7909.2010.00956.x
  23. Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R (2009) An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenerg 33:1503-1508 https://doi.org/10.1016/j.biombioe.2009.07.014