한국의 핵융합장치용 대형초전도자석 기술현황 및 계획

추 용, 박 갑 래, 오 영 국 국가핵융합연구소

1. 서 론

장기적인 에너지 부족 문제를 해결할 수 있 는 근본적인 해결책은 새로운 에너지원을 찾 는 것이다. 국내에서는 현재 3% 이내의 신재 생에너지 비중을 2030년도 10%까지 늘릴 계획을 세우고 있다. 이와 별도로 신재생에너 지의 비중 한계를 채워줄 수 있는 미래 대용 량 에너지원 중 대표적인 하나로써 핵융합에 너지의 개발이 진행되고 있다. 바닷물에서 추 출하는 중수소와 흔한 자원인 리튞을 통해 얻 을 수 있는 삼중수소를 원료로 하는 핵융합발 전은 신재생에너지보다 훨씬 고밀도 대용량의 전력 생산이 가능하다. 핵융합 반응이 일어나 기 위해선 원자핵이 충분히 높은 운동에너지 를 가진 상태에서 일정시간 이상 구속이 되는 조건이 만족돼야 한다. 구속 방식에 따른 대 표적인 방식 중 하나인 자기핵융합은 플라즈 마 내의 하전입자(이온과 전자)가 자기력선을 중심으로 회전하며 구속되는 특성을 이용하는 것이다. 그 중 현재까지 연구의 주류를 이루 어온 것이 토카막 방식이다. 토카막 방식은 도넛 모양의 진공용기 길이 방향과 평행하게 인가된 외부 자기장과 진공용기 내부에서 생 성된 플라즈마 전류에 의해 용기 단면적의 둘 레 방향으로 인가되는 자기장이 벡터 합에 의 하여 나선형으로 꼬인 형태로 나타나는 자기 장을 이용하는 방식이다. 지난 반세기 동안의 선진국 주도의 자기핵융합 장치는 구리를 소 재로 사용함에 따라 성능은 어느 정도 도달해 왔지만, 고자기장 발생에 따른 고비용 문제 발 생 및 플라즈마의 유지시간이 십 여초 정도로 제한되어 연속적인 전력 생산을 필요로 하는 발전소가 되기 위해서는 한계가 있어왔다. 이 에 따라 플라즈마를 고자장하에서 강한 구속력 과 장시간 유지할 수 있는 기술로서 기존의 구 리 자석대신 초전도 자석을 사용한 초전도 토 카막이 한국의 KSTAR와 중국의 EAST 장 치를 중심으로 건설이 되어 현재 활발하게 운 전 연구 중에 있다. 이 장치를 통해 확보된 운 전기술과 연구결과는 현재 건설 중인 ITER 장치와 각국에서 설계 중인 DEMO 실증로 건 설의 핵심 기반기술로 이어질 것으로 전망된 다. 이 글에서는 KSTAR 초전도자석 기술 현 황 및 향후 핵융합 초전도자석의 개발 계획에 대하여 간략히 기술하고자 한다.

2. KSTAR 현황

2.1 KSTAR 초전도자석의 개요

그림1은 KSTAR 초전도자석 형상을 보여 주고 있다. KSTAR 장치는 높이 약 10미터 직경 약 10미터 규모의 중형크기의 토카막 핵융합 연구장치이다. KSTAR 내의 플라즈 마는 주반경 1.8m, 부반경 0.5m, 플라즈마 전류 2MA, 중심 자기장 3.5테슬라, 최대 동 작시간 300초의 준-정상상태 운전을 목표로 하고 있다. KSTAR 주장치는 약 1억도의 초 고온 플라즈마를 가둬두는 도너츠형 진공용기 와 8 테슬라급의 고자장 망을 형성하는 30 개의 대형 초전도자석으로 구성되어 있다. 그 밖에도 KSTAR 운전을 위한 부대장치와 설 비로는 초전도자석의 극저온 냉각을 위한 9kW급의 극저온 헬륩공급장치, 100 MVA 급의 154 kV 전력설비와 PF 전원 구동을 위한 200 MVA, 2 GJ급의 Motor -Generator (MG), 플라즈마 가열장치, 진단 장치 및 중앙제어 시스템 등이 있다.

그림 1. KSTAR 초전도자석.

KSTAR 초전도자석은 크게 토러스형의 중 심자장을 발생하여 플라즈마를 진공용기 내부 에 가두기 위한 토로이달 자장 발생 자석(TF 자석)과 플라즈마 내에 대전류를 발생시키고 플라즈마의 형상을 제어하기 위한 펄스코일인 폴로이달 자장 발생 자석(PF 자석)으로 구분 된다. TF 코일과 PF1-5 코일은 Nb3Sn 초 전도체가 사용되었으며 상대적으로 낮은 자장 에 노출되어 있는 PF6-7 코일과 버스라인은 NbTi 초전도체가 사용되었다. KSTAR와 같 은 핵융합장치에 사용하고 있는 초전도자석은 수십 kA의 대전류와 십 테슬라 규모의 고자 기장 하에서 운전됨에 따라 수 천톤 규모의 전자기력이 도체에 인가될 뿐만 아니라. 수십 kV 정도의 고전압 하에서의 절연 특성을 가 져야 한다. 더불어 플라즈마 발생을 위해 초 전도자석의 자기장을 빠른 속도로 변경해 주 어야 한다. 이 전자기력을 지지하기 위해서는 침적냉각 방식 (pool-boiling)을 사용하는 가속기나 의료용 MRI 등에 사용되는 초전도 자석과는 달리 구조적 강성이 높은 재료를 사 용한 관(Conduit 또는 Jacket) 내부에 초전 도 집합연선을 삽입한 Cable-In-Conduit (CICC) 형태가 사용된다. CICC 의 냉각은 관내로 냉매인 초임계헬륨을 강제 순환하는 방식이 사용된다.

EAST, KSTAR, ITER 등 현재 토카막 초 전도자석 대부분이 Nb₃Sn 혹은 NbTi CICC 를 사용하고 있다. 최근 들어 KIT, MIT, NIFS 등 해외기관에서 핵융합용 대전류 통 전용 초전도체를 고온초전도체를 응용하고자 하는 연구가 진행되고 있으나 경제적·기술적 으로 해결해야할 이슈가 산재해있기 때문에 아직까지 초전도체의 First-cut 설계 정도의 성과 정도가 도출되었을 것으로 판단된다. KSTAR 초전도 자석에 사용된 초전도 선재 와 도체의 제작사양은 표1, 2에 나타내었다.

2.2 KSTAR 초전도자석 운전

KSTAR 극저온 냉각대상물은 총 300 톤 규모의 냉각질량으로 초전도자석, 자석구조 물, 열차폐체, 전류인입장치로 구성되어 있 다. Helium Refrigerator System (HRS) Cold Box의 총 냉각성능은 설계치 기준 4.5 K에서 에너지 동등 9 kW이며, KSTAR 장 치를 상온에서부터 4.5K까지 냉각시키는데 대략 20일이 소요된다. 운전 기간 동안 Current Lead 냉각을 위해 초당 17g의 LHe을 공급하며, TF, PF 코일 및 버스라인 의 냉각을 위해 Cryogenic Circulator를 통 해 4.5K, 600 g/s 의 초임계 헬륨이 공급된 다(그림 2).

표 1. KSTAR 초전도 선재의 기본 사양.

Parameter	Units	TF & PF1-5	PF6-7
Superconductor type		Nb ₃ Sn	NbTi
Strand diameter, unreacted, after coating	mm	0.78±0.02	0.78±0.02
Critical Current Density (Jc@12 T, 4.2 K)	A/mm ²	> 750	
Critical Current Density (Jc@5 T, 4.2 K)			> 2,800
n-value		> 20	> 20
AC Loss (per ±3 T cycle)	mJ/cc	< 250	< 150
Residual Resistivity Ratio(RRR)		> 100	> 100
Cu/Non-Cu Ratio		1.5±0.15:1	2.8±0.15:1
Coating material		Cr	Cr
Coating thickness	μm	1±0.5	1±0.5
Twist Pitch	mm	13±1	9±1
Deff	μm	12.5	10

표 2. KSTAR 도체(CICC)의 제작 사양.

구분	규격	TF	PF1 ~ 5	$PF6 \sim 7$
CICC 규격	CICC Cross Section			
	CICC 폭	25.65 mm	22.3 mm	22.3 mm
	Jacket 두께	2.86 mm	2.41 mm	2.41 mm
초전도 cable	초전도체 재료	Nb ₃ Sn	Nb ₃ Sn	NbTi
	Jacket 재료	Incoloy908	Incoloy908	SUS316LN
	Cable 외경	23.0 ± 0.3	20.7 ± 0.3	20.7 ± 0.3
		mm	mm	mm
	Pattern	3x3x3x3x6	3x4x5x6	3x4x5x6
	Void Fraction	32.5 %	33.5 %	35 %
운전 조건	최대운전전류	35 kA	25 kA	20 kA
	최대인가자장	7.2 T	7.8 T	5.4 T

그림 2. KSTAR 초전도자석의 냉각시스템.

고자장 미그네트 게빌 특집

그림 3. KSTAR 초전도자석의 운전 조건

그림 4. KSTAR TF 초전도자석의 운전.

그림 5. KSTAR TF 초전도자석의 온도 마 진 (초전도선재 strain=0.3%).

그림 3은 상온부터 냉각시 초전도 자석의 토카막 중심 방향으로 열수축 경향을 보여주 고 있다. 매 캠페인 마다 대략 8 mm 정도의 변위를 보여주고 있으며 편차는 최대 0.23 mm 이내로 구조적으로 안정된 상태로 운전이 진행되고 있음을 알 수 있다. 그림 4는 TF 코 정격전류인 35 kA 운전에서 주반경 일 (R=1.8m)에서 3.5 T 의 자장이 측정된 결 과를 보여주고 있으며, 자석 운전 중 온도변화 는 0.2 K 증가의 안정된 상태로 있음을 알 수 있다. 이때 측정되는 스트레인은 대략 700 us 로써 SUS의 항복응력에 대응하는 변형률인 3600 με의 20% 정도인 탄성영역에서 운전된 다. 그림 5의 Load line을 통해 보듯 KSTAR TF 초전도자석의 온도마진은 35 kA, 7 T 운전에서 대략 4 K이다. 이와는 달 리 펄스로 운전되는 PF 자석은 교류손실에 의 해 TF 코일에 비해 온도 상승폭이 상대적으로 매우 크다. 따라서 장시간 AC 운전과 급격한 전류 변화가 중첩되면 코일의 안정적인 운전의 수행이 어렵게 된다. 그림 6은 PF 코일 중 가 장 높은 자기장에 위치한 PF1 코일에 교류전 류를 인가한 후, 열량법을 이용한 교류손실 분 석 결과를 보여준다. PF 1 코일을 15 kA 까 지 1 kA/s 로 충전 후에 전류방전율을 0.5 ~ 6 kA/s 범위에서 조정하여 온도증가를 관측 함과 동시에 열량법을 통해 교류손실을 분석하 였다. 결론적으로 자기 결합시정수(nτ)가 150 ~ 250 ms 로 측정되었으며, 이를 토대 로 각 PF 코일의 전류 변화율의 적정 운전 범 위를 설정하였다. 일례로 온도마진을 2 K 이 상 유지하기 위해 PF1 코일의 경우 플라즈마 착수 시점을 제외한 영역에서 최대 전류 변화 율이 5 kA/s 이내로 운영하였다.

2014년 PF 정격운전 (PF1-5: 25 kA, PF6-7: 20 kA)을 수행키 위하여 200 MVA 용량의 MG (Motor - Generator)의 제작이 완료되어 시운전 되었다. 기본사양 및 형상을 그림 7과 표 3에 나타내었다.

그림 6. KSTAR PF1 초전도자석의 전류변 화율에 따른 초임계헬륨 입·출구 온도 변화.

친국의 핵융횝장치용 대항초진도지식 기술한황 및 계획

그림 8은 TF 코일을 20 kA로 충전 시킨 상태에서 500 kA, Long-pulse (47초) 플 라즈마 전류를 발생시킨 결과이다.MG 초기 시운전에서는 120 MVA 전력만을 투입하여 플라즈마 시운전을 수행하였다.

그림 7. MG 의 단면도.

표	3.	200	MVA	MG	사양.

Parameter	Units	Specification
Туре		Vertical type
Number of poles	EA	14
Max. Capacity	MVA	200
Duty voltage and speed	kV Hz	$22.9 \\ 64 \sim 56$
Pulse length	sec	300
Reactive power	MVAr	Peak 160 Ave. 140
Active power	MW	Peak 38 Ave. 3.3

그림 8. KSTAR 플라즈마 전류 발생 및 그 에 따른 PF 전류 및 MG 전력 순시치.

그림 9. 국가핵융합 연구소 전경.

3. 핵융합 초전도자석 개발 현황

국가핵융합 연구소는 KSTAR, ITER DA, K-DEMO에 이르는 미래 핵융합 에너지 개발 를 선도하는 연구기관이다. KSTAR 운영과 ITER 조달 및 비조달 사업을 통한 핵융합 핵 심 기술을 확보함과 동시에 상용 핵융합로 건설 을 선도하기 위한 K-DEMO 연구가 착수되고 있다. 그림 9은 국가핵융합 연구소의 전경이다.

3.1 ITER용 초전도체 개발

핵융합의 실용화 가능성을 기술적, 공학적 으로 입증하기 위해 'ITER'라 불리는 핵융합 실험로 건설이 프랑스의 남부에서 활발히 진 행 중이다. 이 장치는 핵융합 반응을 통하여 500MW급의 열출력(일반 원전발전의 1/6) 을 발생하는 장치로서, 전기생산 가능성을 실 증하기 위한 국제핵융합실험로이다.

그림 10. ITER 초전도자석 시스템 구조.

고지장 미그내트 개빌 특집 .

그림 11. K-DEMO 개발 Roadmap.

Basic Parameter	Option 1	Option 2	Option 3
Major Radius	6.0 m	6.8 m	7.3 m
Minor Radius	1.8 m	2.1 m	2.2 m
Elongation (k)		2.0	
Magnetic Field@R ₀		7.4 Tesla	
Peak Field		~ 16 Tesla	
Divertor Type		Double Null	
Plasma Current	> 10 MA	> 12 MA	\rangle 13 MA
Fusion Power (MW)	1500~2000	2200~3000	$2700 \sim 3500$
Net Elec. Power (MWe)	130~200	400~700	550~900

표 4. K-DEMO 장치의 사양.

그림 12. TF 자석 및 구조물, 자장에 따라 소형 및 대형 TF CICC의 형상.

ITER 장치는 주반경이 6.2 m로써 1.8m 인 KSTAR 장치보다 월등이 크지만 초전도 자석은 KSTAR 초전도자석과 같은 종류로써 TF와 CS 코일에 Nb₃Sn, PF와 CC에 NbTi를 사용하기 때문에 초전도자석에 관련 된 물리적, 기술적 이슈들, 예를 들어 퀜치검 출, 초전도체 접합 연구 등에 대해 상호 활발 한 교류를 통한 기술 축적이 가능한 환경이 조성되었다.

ITER 초전도 자석과 자석구조물의 무게는 10,150톤, 자기장 에너지는 51 GJ 에 달한 다. 이 중에서 국내에서는 KSTAR 초전도자 석의 개발에 참여하였던 기술을 발전시켜 ITER TF 자석용 초전도체 의 약 20% 분량 을 제작하여 납품을 완료하였다.

3. 2 K-DEMO용 초전도체 개발

한국은 상용 핵융합로인 K-DEMO를 2037년에 완공하고자하는 로드맵을 제시하였다. 현재 개념설계 수행을 위한 전단계가 진행되고 있으며 KSTAR, ITER를 통해 얻은 기술 개발 결과와 접목하여 연구가 진행되고 있다. K-DEMO는 표 4에서 보이는 바와 같이 대략 ITER 장치 정도의 크기이며, 현재 초전도체 개발 기술을 토대로 CICC 초전도체와 초전도자석의 사양 및 형상이 제안되었다. K-DEMO용 TF CICC (그림 12)는 운 전전류 65.5 kA, 최대 16 T에서 운전되며 온도마진은 1 K 이상을 확보할 수 있는 사양

이다.

참고문헌

- [1]G. S. LEE, M. Kwon, C. J. Doh, B. G. Hong, et al., "Design and Construction of the KSTAR Tokamak", Nuclear Fusion 41, p1515, 2001.
- [2]K. Kim, H. K. Park K. Park, B. S. Lim, et al., "Status of the KSTAR superconducting magnet system development," Nuclear Fusion vol. 45, p783, 2005.
- [3]B. S. Lim, S. I. Lee, K. Kim, J. Y. Choi, et al., "Fabrication of the KSTAR superconducting CICC," IEEE Trans. on Applied Superconductivity, vol. 12, p591, 2002.
- [4]K. Kim et al., "Preliminary conceptual design study for Korean fusion DEMO reactor," Fusion Engineering and Design, vol. 88, p488-491, 2013.
- [5] M. Kwon et al., "Strategic plan of Korea for developing fusion energy beyond ITER", Fusion Engineering and Design, vol. 83, p838-888, 2008.
- [6]ITER Web, http://www.iter.org/.
- [7] Mitchell et al.,"Summary, assessment and implications of the ITER model coil test results". Vol. 66-68, pp.971-993, Fusion Engineering and Design, 2003

저자이력

추 용(秋 龍)

1993년 연세대 공대 전기공학과 졸업, 2000년 동 대학원 전기공 학과 졸업(공학박사), 2003년-현 재 국가핵융합연구소 책임연구원.

박갑래(朴甲來)

2004년 한밭대학교 전기공학과 공학석사, 현재 국가핵융합연구 소 책임기술원 및 토카막운전기 술부장.

오영국(吳永國)

1989년 서울대 공대 원자핵공학 과 졸업, 1999년 동 대학원 원 자핵공학과 졸업(공학박사), 1995년- 현재까지 국가핵융합연 구소 책임연구원 및 KSTAR 연 구센터 부센터장.