DOI QR코드

DOI QR Code

Perfluorinated Sulfonic Acid Ionomer-PTFE Pore-filling Membranes for Polymer Electrolyte Membrane Fuel Cells

고분자전해질연료전지용 과불소계 술폰화 이오노머-PTFE 강화막

  • 강성은 (단국대학교 에너지공학과) ;
  • 이창현 (단국대학교 에너지공학과)
  • Received : 2015.04.09
  • Accepted : 2015.04.23
  • Published : 2015.04.30

Abstract

Perfluorinated sulfonic acid ionomers (PFSAs) have been widely as solid electrolyte materials for polymer electrolyte membrane fuel cells, since they exhibit excellent chemical durability under their harsh application conditions as well as good proton conductivity. Even PFSA materials, however, suffer from physical failures associated with repeated membrane swelling and deswelling, resulting in fairly reduced electrochemical lifetime. In this study, pore-filling membranes are prepared by impregnating a Nafion ionomer into the pore of a porous PTFE support film and their fundamental characteristics are evaluated. The developed pore-filling membranes exhibit extremely high proton conductivity of about $0.5S\;cm^{-1}@90^{\circ}C$ in liquid water.

과불소계 술폰화 이오노머(perfluorinated sulfonic acid ionomers; PFSAs)는 뛰어난 수소이온전도성과 높은 내화학성으로 인해 고분자 전해질 연료전지(polymer electrolyte fuel cells)용 고체전해질로 널리 사용되고 있다. 그러나 PFSA 전해질은 가습-건조조건에서 연료전지가 구동에 따라 반복적인 팽윤-수축으로 인해 전극층이 전해질로부터 탈리되어 전기화학적 수명특성이 감소되는 문제점을 가지고 있다. 본 연구에서는 다공성 PTFE support film의 기공특성에 대한 이해를 바탕으로 기공구조 내 나피온 이오노머를 함침시키는 강화막을 제조하였고, 기본특성을 평가하였다. 제조된 강화막은 매우 높은 수소이온전도도(${\sim}~0.5S\;cm^{-1}@90^{\circ}C$ in liquid water)를 나타내었다.

Keywords

References

  1. P. Bebin, M. Caravanier, and H. Galiano, "Nafion$^{(R)}$/clay-$SO_3H$ membrane for proton exchange membrane fuel cell application", J. Membr. Sci., 278, 35 (2006). https://doi.org/10.1016/j.memsci.2005.10.042
  2. Y. Gao, G. P. Robertson, M. D. Guiver, G. Wang, X. Jian, S. D. Mikhailenko, X. Li, and S. Kaliaguine, "Sulfonated copoly (phthalazinone ether ketone nitrile) s as proton exchange membrane materials", J. Membr. Sci., 278, 26 (2006). https://doi.org/10.1016/j.memsci.2005.10.041
  3. X. Shang, S. Tian, L. Kong, and Y. Meng, "Synthesis and characterization of sulfonated fluorene- containing poly (arylene ether ketone) for proton exchange membrane", J. Membr. Sci., 266, 94 (2005). https://doi.org/10.1016/j.memsci.2005.05.014
  4. H. Li and M. Nogami, "Pore-controlled proton conducting silica films", Adv. Mater., 14, 912 (2002). https://doi.org/10.1002/1521-4095(20020618)14:12<912::AID-ADMA912>3.0.CO;2-L
  5. S.-L. Chen, K.-Q. Xu, and P. Dong, "Preparation of three-dimensionally ordered inorganic/organic bi-continuous composite proton conducting membranes", Chem. Mater., 17, 5880 (2005). https://doi.org/10.1021/cm050709a
  6. J. C. McKeen, Y. S. Yan, and M. E. Davis, "Proton conductivity of acid-functionalized zeolite beta, MCM-41, and MCM-48: effect of acid strength", Chem. Mater., 20, 5122 (2008). https://doi.org/10.1021/cm801418r
  7. R. Kannan, B. A. Kakade, and V. K. Pillai, "Polymer electrolyte fuel cells using Nafion based composite membranes with functionalized carbon nanotubes", Angew. Chem. Int. Ed., 47, 2653 (2008). https://doi.org/10.1002/anie.200704343
  8. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, "Fabrication and characterization of heteropolyacid ($H_3PW_{12}O_{40}$)/directly polymerized sulfonated poly (arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications", J. Membr. Sci., 212, 263 (2003). https://doi.org/10.1016/S0376-7388(02)00507-0
  9. M. Ponce, L. Prado, B. Ruffmann, K. Richau, R. Mohr, and S. Nunes, "Reduction of methanol permeability in polyetherketone-heteropolyacid membranes", J. Membr. Sci., 217, 5 (2003). https://doi.org/10.1016/S0376-7388(02)00309-5
  10. D. J. Kim and S. Y. Nam, "Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  11. D. Wu, S. J. Paddison, J. A. Elliott, and S. J. Hamrock, "Mesoscale modeling of hydrated morphologies of 3M perfluorosulfonic acid-based fuel cell electrolytes", Langmuir, 26, 14308 (2010). https://doi.org/10.1021/la102358y
  12. C. H. Lee, K.-S. Lee, O. Lane, J. E. McGrath, Y. Chen, S. Wi, S. Y. Lee, and Y. M. Lee, "Solvent-assisted thermal annealing of disulfonated poly (arylene ether sulfone) random copolymers for low humidity polymer electrolyte membrane fuel cells", RSC Adv., 2, 1025 (2012). https://doi.org/10.1039/C1RA00681A
  13. G. H. Li, C. H. Lee, Y. M. Lee, and C. G. Cho, "Preparation of poly (vinyl phosphate-b-styrene) copolymers and its blend with PPO as proton exchange membrane for DMFC applications", Solid State Ionics, 177, 1083 (2006). https://doi.org/10.1016/j.ssi.2006.03.003
  14. T. Yamaguchi, F. Miyata, and S.-I. Nakao, "Polymer electrolyte membranes with a pore filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003). https://doi.org/10.1002/adma.200304926
  15. M. Watanabe, H. Uchida, Y. Seki, M. Emori, and P. Stonehart, "Self-humidifying polymer electrolyte membranes for fuel cells", J. Electrochem. Soc., 143, 3847 (1996). https://doi.org/10.1149/1.1837307
  16. B. Baradie, J. Dodelet, and D. Guay, "Hybrid Nafion$^{(R)}$-inorganic membrane with potential applications for polymer electrolyte fuel cells", J. Electroanal. Chem., 489, 101 (2000). https://doi.org/10.1016/S0022-0728(00)00227-8
  17. C. Yang, S. Srinivasan, A. Arico, P. Creti, V. Baglio, and V. Antonucci, "Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature", Electrochem. Solid-State Lett., 4, A31 (2001). https://doi.org/10.1149/1.1353157
  18. N. Miyake, J. Wainright, and R. Savinell, "Evaluation of a sol-gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications: II. Methanol uptake and methanol permeability", J. Electrochem. Soc., 148, A905 (2001). https://doi.org/10.1149/1.1383072
  19. Y. M. Lee and H. B. Park, "Development of Membrane Materials for Direct Methanol Fuel Cell", Membr. J., 10, 103 (2000).
  20. D. Lee and S. Hwang, "Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs", Int. J. Hydrogen Energ., 33, 2790 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.046
  21. M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka, and Z. Ogumi, "Gas crossover and membrane degradation in polymer electrolyte fuel cells", ElElectrochim. Acta, 51, 5746 (2006). https://doi.org/10.1016/j.electacta.2006.03.008
  22. J. Park, M. Shin, S. Sekhon, Y. Choi, and T. Yang, "Effect of annealing on Nafion recast membranes containing ionic liquids", J. Korean Electrochem. Soc., 14, 9 (2011). https://doi.org/10.5229/JKES.2011.14.1.009
  23. http://www.novocell.ind.br/en/produtos/componentes/membranas-nafion
  24. http://en.wikipedia.org/wiki/Polytetrafluoroethylene
  25. D. Yoshikawa, R. p. N. Nair, and H. Taguchi, "Performance of a ceramic fiber reinforced polymer membrane as electrolyte in direct methanol fuel cell", Membr. J., 14, 53 (2004).
  26. C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee, "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application", Ind. Eng. Chem. Res., 44, 7617 (2005). https://doi.org/10.1021/ie0501172
  27. L. A. Zook and J. Leddy, "Density and solubility of Nafion: recast, annealed, and commercial films", Anal. Chem., 68, 3793 (1996). https://doi.org/10.1021/ac960604e