References
-
P. Bebin, M. Caravanier, and H. Galiano, "Nafion
$^{(R)}$ /clay-$SO_3H$ membrane for proton exchange membrane fuel cell application", J. Membr. Sci., 278, 35 (2006). https://doi.org/10.1016/j.memsci.2005.10.042 - Y. Gao, G. P. Robertson, M. D. Guiver, G. Wang, X. Jian, S. D. Mikhailenko, X. Li, and S. Kaliaguine, "Sulfonated copoly (phthalazinone ether ketone nitrile) s as proton exchange membrane materials", J. Membr. Sci., 278, 26 (2006). https://doi.org/10.1016/j.memsci.2005.10.041
- X. Shang, S. Tian, L. Kong, and Y. Meng, "Synthesis and characterization of sulfonated fluorene- containing poly (arylene ether ketone) for proton exchange membrane", J. Membr. Sci., 266, 94 (2005). https://doi.org/10.1016/j.memsci.2005.05.014
- H. Li and M. Nogami, "Pore-controlled proton conducting silica films", Adv. Mater., 14, 912 (2002). https://doi.org/10.1002/1521-4095(20020618)14:12<912::AID-ADMA912>3.0.CO;2-L
- S.-L. Chen, K.-Q. Xu, and P. Dong, "Preparation of three-dimensionally ordered inorganic/organic bi-continuous composite proton conducting membranes", Chem. Mater., 17, 5880 (2005). https://doi.org/10.1021/cm050709a
- J. C. McKeen, Y. S. Yan, and M. E. Davis, "Proton conductivity of acid-functionalized zeolite beta, MCM-41, and MCM-48: effect of acid strength", Chem. Mater., 20, 5122 (2008). https://doi.org/10.1021/cm801418r
- R. Kannan, B. A. Kakade, and V. K. Pillai, "Polymer electrolyte fuel cells using Nafion based composite membranes with functionalized carbon nanotubes", Angew. Chem. Int. Ed., 47, 2653 (2008). https://doi.org/10.1002/anie.200704343
-
Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, "Fabrication and characterization of heteropolyacid (
$H_3PW_{12}O_{40}$ )/directly polymerized sulfonated poly (arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications", J. Membr. Sci., 212, 263 (2003). https://doi.org/10.1016/S0376-7388(02)00507-0 - M. Ponce, L. Prado, B. Ruffmann, K. Richau, R. Mohr, and S. Nunes, "Reduction of methanol permeability in polyetherketone-heteropolyacid membranes", J. Membr. Sci., 217, 5 (2003). https://doi.org/10.1016/S0376-7388(02)00309-5
- D. J. Kim and S. Y. Nam, "Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
- D. Wu, S. J. Paddison, J. A. Elliott, and S. J. Hamrock, "Mesoscale modeling of hydrated morphologies of 3M perfluorosulfonic acid-based fuel cell electrolytes", Langmuir, 26, 14308 (2010). https://doi.org/10.1021/la102358y
- C. H. Lee, K.-S. Lee, O. Lane, J. E. McGrath, Y. Chen, S. Wi, S. Y. Lee, and Y. M. Lee, "Solvent-assisted thermal annealing of disulfonated poly (arylene ether sulfone) random copolymers for low humidity polymer electrolyte membrane fuel cells", RSC Adv., 2, 1025 (2012). https://doi.org/10.1039/C1RA00681A
- G. H. Li, C. H. Lee, Y. M. Lee, and C. G. Cho, "Preparation of poly (vinyl phosphate-b-styrene) copolymers and its blend with PPO as proton exchange membrane for DMFC applications", Solid State Ionics, 177, 1083 (2006). https://doi.org/10.1016/j.ssi.2006.03.003
- T. Yamaguchi, F. Miyata, and S.-I. Nakao, "Polymer electrolyte membranes with a pore filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003). https://doi.org/10.1002/adma.200304926
- M. Watanabe, H. Uchida, Y. Seki, M. Emori, and P. Stonehart, "Self-humidifying polymer electrolyte membranes for fuel cells", J. Electrochem. Soc., 143, 3847 (1996). https://doi.org/10.1149/1.1837307
-
B. Baradie, J. Dodelet, and D. Guay, "Hybrid Nafion
$^{(R)}$ -inorganic membrane with potential applications for polymer electrolyte fuel cells", J. Electroanal. Chem., 489, 101 (2000). https://doi.org/10.1016/S0022-0728(00)00227-8 - C. Yang, S. Srinivasan, A. Arico, P. Creti, V. Baglio, and V. Antonucci, "Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature", Electrochem. Solid-State Lett., 4, A31 (2001). https://doi.org/10.1149/1.1353157
- N. Miyake, J. Wainright, and R. Savinell, "Evaluation of a sol-gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications: II. Methanol uptake and methanol permeability", J. Electrochem. Soc., 148, A905 (2001). https://doi.org/10.1149/1.1383072
- Y. M. Lee and H. B. Park, "Development of Membrane Materials for Direct Methanol Fuel Cell", Membr. J., 10, 103 (2000).
- D. Lee and S. Hwang, "Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs", Int. J. Hydrogen Energ., 33, 2790 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.046
- M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka, and Z. Ogumi, "Gas crossover and membrane degradation in polymer electrolyte fuel cells", ElElectrochim. Acta, 51, 5746 (2006). https://doi.org/10.1016/j.electacta.2006.03.008
- J. Park, M. Shin, S. Sekhon, Y. Choi, and T. Yang, "Effect of annealing on Nafion recast membranes containing ionic liquids", J. Korean Electrochem. Soc., 14, 9 (2011). https://doi.org/10.5229/JKES.2011.14.1.009
- http://www.novocell.ind.br/en/produtos/componentes/membranas-nafion
- http://en.wikipedia.org/wiki/Polytetrafluoroethylene
- D. Yoshikawa, R. p. N. Nair, and H. Taguchi, "Performance of a ceramic fiber reinforced polymer membrane as electrolyte in direct methanol fuel cell", Membr. J., 14, 53 (2004).
- C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee, "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application", Ind. Eng. Chem. Res., 44, 7617 (2005). https://doi.org/10.1021/ie0501172
- L. A. Zook and J. Leddy, "Density and solubility of Nafion: recast, annealed, and commercial films", Anal. Chem., 68, 3793 (1996). https://doi.org/10.1021/ac960604e