DOI QR코드

DOI QR Code

태양전지모듈용 고내구성 저가형 백시트

Low-costBacksheet Materials with Excellent Resistance to Chemical Degradation for Photovoltaic Modules

  • 표세연 (단국대학교 에너지공학과) ;
  • 이창현 (단국대학교 에너지공학과)
  • 투고 : 2015.06.02
  • 심사 : 2015.06.24
  • 발행 : 2015.06.30

초록

태양전지는 태양복사에너지를 반도체의 광전효과를 통해 전기에너지로 변환시키는 친환경 에너지변환장치를 의미한다. 수분을 포함하는 다양한 화학물질들에 대한 높은 차단성을 갖는 다층형 필름인 백시트는 태양전지의 중요한 요소이다. 대표적인 백시트는 polyvinyl fluoride (PVF)와 poly(ethylene terephthalate) (PET)의 다층필름으로 구성된다. PVF는 높은 내후성을 가지는 반면, 가격이 상대적으로 비싼 단점을 보인다. 따라서, 백시트의 제조가격을 낮출 수 있으면서, 동시에 실제 태양전지모듈에 적용할만한 수명특성을 만족시킬 수 있는 대체소재의 개발이 필수적이다. 본 연구에서는 일정수준의 결정성을 갖는 PET 필름을 PVF 필름 대신 사용하였다. 그러나, PET 소재는 다양한 pH 조건에서 trans-esterification 및 가수분해에 의해 분해될 수 있기 때문에, 태양전지의 구동조건에서 PET의 분해거동을 이해할 필요가 있다. 단시간 내 화학적 분해거동을 평가하기 위해서, 가속화된 PET 분해실험 프로토콜이 개발되었다. 마지막으로, 제안 개념의 효용성은 태양전지모듈의 장기운전성능 평가를 통해 확인하였다.

Photovoltaic (PV) modules are environmentally friendly energy-conversion devices to generate electricity via the photovoltaic effect of semiconductors on solar energy. One of key elements in PV modules is "Backsheet," a multi-layered film to protect the devices from a variety of chemicals including water vapor. A representative Backsheet is composed of polyvinyl fluoride (PVF) and poly(ethylene terephthalate) (PET). PVF is relatively expensive, while showing excellent resistance to chemical attacks. Thus, it is necessary to develop alternatives which can lower its high production cost and guarantee lifetime applicable to practical PV modules at the same time. In this study, PET films with certain levels of crystallinity were utilized instead of PVF. Since it is well known that PET is suffering from trans-esterification and hydrolysis under a wide pH range, it is needed to understand decomposition behavior of the PET films under PV operation conditions. To evaluate their chemical decomposition behavior within a short period of times, accelerated decomposition test protocol is developed. Moreover, electrochemical long-term performances of the PV module employing the PET-based Backsheet are investigated to prove the efficacy of the proposed concept.

키워드

참고문헌

  1. D. H. Cho, M. H. Yun, S. Y. Kwon, and J. K. Koo, "Effect of plasticizer on electrolyte membranes for dye sensitized solar cells", Membr. J., 20, 13 (2010).
  2. M. J. Choi, C. H. Shin, T. U. Kang., J. K. Koo, and N. J. Cho, "A study on the organic/inorganic composite electrolyte membranes for dye sensitized solar cell", Membr. J., 18, 345 (2008).
  3. T. U. Kang, C. H. Shin, M. J. Choi, J. K. Koo, and N. J. Cho, "A study on the ionic conducting characteristics of electrolyte membranes containing KI and I2 for dye sensitized solar cell", Membr. J., 20, 21 (2010).
  4. M. Quintana, D. King, T. McMahon, and C. Osterwald, "Commonly observed degradation in field-aged photovoltaic modules", Conf. Record, 29th IEEE PVSC., IEEE, pp. 1436, New Orleans (2002).
  5. http://en.wikipedia.org/wiki/Polyvinyl_fluoride
  6. http://www.dupont.co.kr/products-and-services/solarphotovoltaic-materials/articles/protect-modules-withtedlar- backsheet-film.html
  7. G. Oreski and G. Wallner, "Delamination behaviour of multi-layer films for PV encapsulation", Sol. Energ. Mater. Sol. Cells., 89, 139 (2005). https://doi.org/10.1016/j.solmat.2005.02.009
  8. B. M. Kim, K. S. Lee, M. K. Kim, G. H. Kang, H. K. Lee, and M. J. Park, "A Study on manufacturing process of PV Module according to Back sheet type", J. Korean. Sol. Energ. Soc., 30, 389 (2010).
  9. N. Kim, H. Kang, K.-J. Hwang, C. Han, W. S. Hong, D. Kim, E. Lyu, and H. Kim, "Study on the degradation of different types of backsheets used in PV module under accelerated conditions", Sol. Energ. Mater. Sol. Cells., 120, 543 (2014). https://doi.org/10.1016/j.solmat.2013.09.036
  10. http://en.wikipedia.org/wiki/Polyethylene_terephthalate
  11. V. Sinha, M. R. Patel, and J. V. Patel, "PET waste management by chemical recycling: a review", J. Polym. Environ., 18, 8 (2010). https://doi.org/10.1007/s10924-008-0106-7
  12. E. Ageev, N. Strusovskaya, and N. Matushkina, "Sorption of solutions complicated by the crystallization of a polymer sorbent", Petrol Chem., 53, 546 (2013). https://doi.org/10.1134/S0965544113070037
  13. http://www.polymerprocessing.com/polymers/PET.html
  14. H. Tabekh, Y. Koudsi, and Z. Ajji, "Chemical recycling of poly (ethylene terephthalate) using sulfuric acid", Rev. Roum. Chim., 57, 1031 (2012).
  15. Y. Abdelaal, T. R. Sobahi, and M. S. Makki, "Chemical degradation of poly (ethylene terephthalate)", Int. J. Polymer. Mater., 57, 73 (2008). https://doi.org/10.1080/00914030701329080
  16. T. Yoshioka, T. Sato, and A. Okuwaki, "Hydrolysis of waste PET by sulfuric acid at $150^{\circ}C$ for a chemical recycling", J. Appl. Polym. Sci., 52, 1353 (1994). https://doi.org/10.1002/app.1994.070520919
  17. W. Gambogi, Y. Heta, K. Hashimoto, J. Kopchick, T. Felder, S. MacMaster, A. Bradley, B. Hamzavytehrany, L. Garreau-Iles, T. Aoki, K. Stika, T. J. Trout, and T. Sample, "A Comparison of key PV backsheet and module performance from fielded module exposures and accelerated tests", IEEE. J. photovolt., 4, 935 (2014). https://doi.org/10.1109/JPHOTOV.2014.2305472
  18. R. Khatri, S. Agarwal, I. Saha, S. K. Singh, and B. Kumar, "Study on long term reliability of photo- voltaic modules and analysis of power degradation using accelerated aging tests and electroluminescence technique", Energy Procedia, 8, 396 (2011). https://doi.org/10.1016/j.egypro.2011.06.156
  19. C. I. Calcagno, C. M. Mariani, S. Teixeira, and R. Mauler, "The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites", Appl. Surf. Sci., 48, 966 (2007).