DOI QR코드

DOI QR Code

Effect of Step-aeration on Inorganic Particle Mixtures Filtration in a Submerged Hollow Fiber Microfiltration Membrane

침지식 중공사 정밀여과 분리막에서 무기혼합입자 여과에 대한 단계별 공기세정의 영향

  • Received : 2015.05.20
  • Accepted : 2015.06.19
  • Published : 2015.06.30

Abstract

The goal is to compare two different aeration strategies for a pilot scale operation of submerged microfiltration with respect to the minimization of membrane fouling. A constant aeration (65 L/min) was examined parallel with a step-wise increase in airflow rate (40 to 65 L/min). The airflow rate was stepped to a higher rate every 5 min and the step-aeration cycles were repeated at regular intervals of 15 min. The comparative filtration runs were conducted with synthetic water containing powdered activated carbon (~10 g/L) and/or kaolin (~20 g/L) at a constant flux of 80 LMH. The extent and mechanisms of fouling in the microfiltration were identified by determining hydraulic resistance to filtration and the fouling reversibility after cleaning. Results showed that the step-aeration effectively alleviated fouling in the microfiltration of synthetic water compared to when using constant aeration. A substantial decrease in fouling was achieved by combining with coagulation using aluminum salts regardless of the aeration strategies. The constant aeration resulted in increased pore blocking likely due to increased accumulation of particles on the surface of membrane.

침지식분리막 오염을 최소화하기 위한 두 가지 공기세정방식을 비교하였다. 연속적인 공기세정과 단계별 공기량을 증가시키는 방식을 연구하였다. 15분의 여과 중에 세정공기의 증가는 5분마다 단계별로 공기량을 증가시켜주었다. 모의 여과 원수에 분말활성탄을 10 g/L 이하 그리고 카올린은 20 g/L 이하로 준비하였으며, 플러스는 80 LMH로 하였다. 단계별 공기세정방식은 연속적인 공기세정 방식보다 분리막 오염억제에 효과적이었다. 추가적으로 주입된 응집제는 분리막 오염저감을 보다 향상시켰다. 연속적인 공기세정의 오염현상은 공경막힘과 분리막 표면에 지속적인 입자의 축적에 기인하였다.

Keywords

References

  1. S. Judd, "The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment", pp. 2-17, Elservier, Oxford (2006).
  2. M. H. Al-Malack and G. K. Andedon, "Use of crossflow microfiltration in wastewater treatment", Water Res., 12, 3064 (1997).
  3. L. Van Dijk and G. G. G. Roncken, "Membrane bioreactors for wastewater treatment: the state of the art and new developments", Wat. Sci. Technol., 35, 35 (1997).
  4. R. Rautenbach and G. Schock, "Ultrafiltration of macromolecular solutions and cross-flow microfiltration of colloidal suspensions. A condition to permeate flux calculations", J. Membr. Sci., 36, 231 (1998).
  5. J. G. Jacangelo, R. R. Trussell, and M. Watson, "Role of membrane technology in drinking water treatment in use United Sates", Desalination, 113, 119 (1997). https://doi.org/10.1016/S0011-9164(97)00120-3
  6. E. K. Kerry and R. C. Lindsay, "Handbook of milkfat fractionation technology and applications", AOCS, Champaign (1995).
  7. H. M. Ma, L. F. Hakim, and C. N. Bowman, "Factors affecting membrane fouling reduction by surface modification and backpulsing", J. Membr. Sci., 189, 255 (2001). https://doi.org/10.1016/S0376-7388(01)00422-7
  8. Y. K. Choi, O. S. Kwon, H. S. Park, and S. H. Noh, "Mechanism of gel layer removal for intermittent aeration in the MBR process", Membr. J., 16, 188 (2006).
  9. J. Y. Park and J. H. Hwang, "Hybrid water treatment of photocatalyst coated polypropylene beads and ceramic membranes: effect of membrane and water back-flushing period", Membr. J., 23, 211 (2013).
  10. I. G. Wenten, "Mechanisms and control of fouling in cross-flow microfiltration", Filt. Sep., 32, 252 (1995). https://doi.org/10.1016/S0015-1882(97)84049-9
  11. V. G. J. Rodgers and R. E. Sparks, "Effects of solution properties on polarization redevelopment and flux in pressure pulsed ultrafiltration", J. Membr. Sci., 78, 163 (1993). https://doi.org/10.1016/0376-7388(93)85258-X
  12. S. G. Redkar, and R. H. Davis, "Cross-flow microfiltration with high frequency reverse filtration", AlChe. J., 41, 501 (1995). https://doi.org/10.1002/aic.690410308
  13. K. Matsumoto, S. Katsuyama, and H. Ohya, "Separation of yeast by crossflow filtration with backwashing", J. Ferment. Bioeng., 65, 77 (1987).
  14. K. Matsumoto, M. Kawahara, and H. Ohya, "Cross-flow filtration of yeast by microporous ceramic membrane with backwashing", J. Ferment. Bioeng., 66, 199 (1988).
  15. A. Nipkow, J. G. Zeikus, and P. Gerhardt, "Microfiltration cell-recycle pilot system for continuous thermoanaerobic production of exo-beta- amylase", Biotech. Bioeng., 34, 1075 (1989). https://doi.org/10.1002/bit.260340808
  16. C. Chiemchaisri, K. Yamamoto, and S. Vigneswaran, "Household membrane bioreactor in domestic wastewater treatment", Water Sci. Technol., 27, 171 (1993). https://doi.org/10.2166/wst.1993.0041
  17. C. Chiemchaisri, Y. K. Wong, T. Urase, and K. Yamamoto, "Organic stabilisation and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment", Filtrat. Sep., 30, 247 (1993). https://doi.org/10.1016/0015-1882(93)80184-X
  18. K. Yamamoto and K. M. Win, "Tannery wastewater treatment using a sequencing bath membrane reactor", Water Sci. Tech., 23, 1639 (1991). https://doi.org/10.2166/wst.1991.0618
  19. T. Ueda, K. Hata, and Y. Kikuoka, "Effects of aeration on suction pressure in a submerged membrane bioreactor", Water Res., 31, 489 (1997). https://doi.org/10.1016/S0043-1354(96)00292-8
  20. J. Benitez, A. Rodriguez, and R. Malaver, "Stabilisation and dewatering of wastewater using hollow fiber membranes", Water Res., 29, 2281 (1991).
  21. Z. F. Cui, S. Chang, and A. G. Fane, "Review: The use of gas bubbling to enhance membrane processes", J. Membr. Sci., 221, 1 (2003). https://doi.org/10.1016/S0376-7388(03)00246-1
  22. A. Brookes, B. Jefferson, G. Guglielmi, and S. J. Judd, "Sustainable Flux Fouling in a Membrane Bioreator: Impact of Flux and MLSS", Sep. Sci. and Tech., 41, 1279 (2006). https://doi.org/10.1080/01496390600634509
  23. F. Fan, H. Zhou, and H. Husain, "Identification of wastewater sludge characteristics to periodic critical flux for membrane bioreactor process", Water Res., 40, 205 (2006). https://doi.org/10.1016/j.watres.2005.10.037
  24. G. Rubin, "Widerstands-und Auftriebsbeiwerte von ruhenden kugelformigen Partikeln insatationaren laminaren Grenzschichten", Dissertation, TH Karlsruhe (1977).
  25. B. O. Cho and A. G. Fane, "Fouling transients in nominally sub-critical flux operation of a membrane bioreactor", J. Membr. Sci., 209, 391 (2002). https://doi.org/10.1016/S0376-7388(02)00321-6
  26. S. Ognier, C. Wismewski, and A. Grasmick, "Membrane bioreactor fouling in sub-critical filtration condition: a local critical flux concept", J. Membr. Sci., 229, 171 (2004). https://doi.org/10.1016/j.memsci.2003.10.026
  27. G. Belfort, R. H. Davis, and A. L. Zydney, "The behavior of suspensions and macromoleculr solutions in crossflow microfiltration", J. Membr. Sci., 96, 1-58 (1994). https://doi.org/10.1016/0376-7388(94)00119-7
  28. J. Altmann and S. Ripperger, "Particle deposition and layer formation at the crossflow microfiltration", J. Membr. Sci., 124, 119 (1997). https://doi.org/10.1016/S0376-7388(96)00235-9
  29. C. A. Romero and R. H. Davis, "Global model of crossflow microfiltration based on hydrodynamic particle diffusion", J. Membr. Sci., 39, 157 (1998).
  30. N. N. Kramadhati, M. Mondor, and C. Moresoli, "Evaluation of the shear induced diffusion model for the microfiltration of polydisperse feed suspension", Sep. Purif. Technol., 27, 11 (2002). https://doi.org/10.1016/S1383-5866(01)00172-1
  31. P. Zhao, S. Takizawa, H. Katayama, and S. Ohgaki, "Factors causing cake fouling in PAC-MF (powder activated carbon-microfiltration) water treatment systems", Wat. Sci. Tech., 51, 231 (2005).
  32. M. H. Al-Malack, A. A. Bukhari, and N. S. Abuzaid, "Crossflow microfiltration of electrocoagulated kaolin suspension: fouling mechanism", J. Membr. Sci., 243, 143 (2004). https://doi.org/10.1016/j.memsci.2004.05.032