
Bull. Korean Math. Soc. 52 (2015), No. 4, pp. 1305–1319
http://dx.doi.org/10.4134/BKMS.2015.52.4.1305

HYPERBOLIC NOTIONS ON A PLANAR GRAPH OF

BOUNDED FACE DEGREE

Byung-Geun Oh

Abstract. We study the relations between strong isoperimetric inequal-
ities and Gromov hyperbolicity on planar graphs, and give an alternative
proof for the following statement: if a planar graph of bounded face degree
satisfies a strong isoperimetric inequality, then it is Gromov hyperbolic.
This theorem was formerly proved in the author’s paper from 2014 [12]
using combinatorial methods, while geometric approach is used in the
present paper.

1. Introduction

For a given connected infinite graph G = (V (G), E(G)), where V (G) is the
vertex set and E(G) is the edge set of G, there are several notions for the
type of G. For example, G is usually called parabolic (hyperbolic) if the simple
random walk on G is recurrent (transient, respectively) [14]. Another examples
are Vertex Extremal Length(VEL)-hyperbolicity versus VEL-parabolicity, and
Edge Extremal Length(EEL)-hyperbolicity versus EEL-parabolicity [8], etc.

In this paper we are especially interested in a concept that is related to
various hyperbolic notions: strong isoperimetric inequalities. To explain this
concept, let G be given as above, and suppose S = (V (S), E(S)) is a finite
subgraph of G. The vertex boundary of S, which we denote by dS, is defined as
the set of vertices in V (S) that have neighbors in V (G)\V (S). Then Cheeger’s

constant of G is

h(G) := inf
S

|dS|

|V (S)|
,

where S runs over all nonempty finite subgraphs of G and | · | denotes the car-
dinality of the set, and we say that G satisfies a strong isoperimetric inequality
if h(G) > 0. It is known that if G is of bounded valence, that is, if degrees of
the vertices of G are uniformly bounded, then the inequality h(G) > 0 implies
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all of the hyperbolic notions explained above (transient random walk, VEL-
hyperbolicity, and EEL-hyperbolicity) in a rather strong way (see [14, p. 82]
and [8]). For this reason a graph is sometimes called uniformly hyperbolic or
strongly hyperbolic if it satisfies a strong isoperimetric inequality.

We remark here that the constant h(G) is one of the several discrete ana-
logues of the continuous version of Cheeger’s constant [3]. For other types of
discrete Cheeger’s constant, see for example [12].

Another hyperbolic notion we want to study is Gromov hyperbolicity, which
is defined as follows. Let (X, d) be a metric space. We say that X is hyperbolic
in the sense of Gromov, or Gromov hyperbolic, if there exists a constant δ ≥ 0
such that every four points x, y, z, w ∈ X satisfy the inequality

(1.1) (x, y)w ≥ min{(x, z)w, (y, z)w} − δ,

where

(a, b)c =
1

2

(

d(a, c) + d(b, c)− d(a, b)
)

.

The quantity (a, b)c is called the Gromov product of a and b with respect to the
base point c. If X = R

2, then (a, b)c represents the distance from c to the closer
intersection points of the triangle abc and its inscribed circle. See Figure 1.

(a
, b
) c

c b

a

Figure 1. Gromov product in a Euclidean triangle

Every graph can be considered a one dimensional simplicial complex, hence
we can equip it with the simplicial metric. That is, for a given graph G,
we identify each edge of G with a line segment of length one, and define the
distance between any two points x, y ∈ G as the infimum of the lengths of the
curves in G that connects x and y. Note that this definition is valid not only
when x and y are vertices of G but also when they are just points on G. With
this definition we can treat each graph as a (geodesic) metric space, hence it is
possible to ask whether it is Gromov hyperbolic or not.
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The concept of Gromov hyperbolicity was introduced in the theory of groups
[7], where Gromov studied finitely generated free groups. See [4, 5, 6, 7] for
more about Gromov hyperbolic spaces.

From now on, we will assume that G is a connected simple infinite planar

graph embedded into R
2 locally finitely such that deg v < ∞ and deg f < ∞

for every vertex v ∈ V (G) and face f ∈ F (G), where F (G) is the face set of G
and deg v (or deg f) denotes the degree of v (or f , respectively). See Section 2
for the precise definitions of these terminologies.

Our main result is the following.

Theorem 1.1. Suppose G is a planar graph whose face degrees are uniformly

bounded. If G satisfies a strong isoperimetric inequality, then it is Gromov

hyperbolic.

In fact, Theorem 1.1 was proved in [12, Theorem 6(a)] using some combi-
natorial methods. The main tool was so called the detour map introduced in
[2]. The purpose of the present paper is to give an alternative proof for Theo-
rem 1.1 using a geometric method. We believe that this geometric method is
more elementary and natural than the combinatorial one.

2. Preliminaries

A graph G = (V (G), E(G)) is a pair of the vertex set V (G) and the edge set
E(G) ⊂ V (G) × V (G). We always assume that G is undirected, which means
that the edge [v, w] ∈ E(G) is considered the same as [w, v] for v, w ∈ V (G).
Therefore, E(G) consists of some unordered pairs in V (G) × V (G). If e =
[v, w] ∈ E(G), v is called a neighbor of w, and vice versa. In this case we also
say that e connects v and w, and v and w are incident to (or endpoints of) e. A
path is a finite sequence of vertices [v0, v1, . . . , vn] such that [vk−1, vk] ∈ E(G)
for all k = 1, 2, . . . , n, and a path is called a cycle if v0 = vn. Also in this case
we say that the path is of length n. A path or a cycle is called simple if it has
no self intersections; i.e., vi 6= vj for i < j, unless i = 0 and j = n. We say
that G is infinite if V (G) is an infinite set, and connected if it is connected as
a one dimensional simplicial complex. The graph G is called simple if it has no
multiple edges and no self loops. That is, for v, w ∈ V (G) there are at most
one edge e ∈ E(G) connecting v and w, and for every e = [v, w] ∈ E(G) we
have v 6= w.

If there is a continuous injective map ı : G →֒ R
2, then the graph G is called

planar and its image ı(G) is called an embedded graph. Strictly speaking, G and
ı(G) are distinct objects, but we do not distinguish them and use the letter G
for ı(G). Moreover, we also assume that G is embedded into R

2 locally finitely;
i.e., we assume that for every compact set K ⊂ R

2 there are only finitely many
vertices and edges of G that intersect with K.

When G is a connected planar graph embedded into R
2 locally finitely, a

component of R2 \ G is called an open face of G, and its closure is called a
closed face, or just a face, of G. We also denote by F (G) the set of (closed)
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faces of G. Note that by the definition a face f ∈ F (G) is the closure of the
corresponding open face g, but in general g does not have to be the interior
of f . See Figure 2 for this. However, g will become the interior of f when G
has no cut-vertices; i.e., when there is no vertex v ∈ V (G) such that G \ {v}
is disconnected. In fact if G has no cut-vertices, then the boundary ∂g of g
must be a simple cycle. This is because, by the Jordan curve theorem, every
repeated vertex of ∂g becomes a cut-vertex of G. Thus in this case we must
have ∂g = ∂f , f is homeomorphic to the closed unit disk, and g is the interior
of f .

Figure 2. The shaded part represents a (closed) face that is
not simply connected, and the corresponding open face is not
the interior of the closed face

In the last section (Section 5) of this paper we will reduce Theorem 1.1 to
the case when G has no cut-vertices, so until then we will always assume that
G does not have any cut-vertices.

For every v ∈ V (G), the degree of v is the number of neighbors of v, and it
is denoted by deg v. Similarly for every f ∈ F (G), deg f denotes the degree, or
the girth, of f and indicates the number of edges surrounding f . That is, we
define deg f as the length of ∂f , which is in general a union of cycles. Perhaps,
however, it might be correct to define deg f as the length of the cycle ∂g, where
g is the open face corresponding to f . Recall that Theorem 1.1 requires face
degrees to be uniformly bounded, so one might think that the definition for
deg f should be fixed, since otherwise some confusions could arise. But as
we will discuss in Section 5, for Theorem 1.1 it does not matter whether we
interpret deg f as the length of ∂f or as the length of ∂g. Moreover, if G has
no cut-vertices, we have ∂f = ∂g and f becomes a topological k-gon for some
k ∈ N with 3 ≤ k ≤ N , where the inequality 3 ≤ k comes from the simplicity
of G and N is an upper bound of face degrees.
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A graph S = (V (S), E(S)) is called a subgraph of G if V (S) ⊂ V (G) and
E(S) ⊂ E(G). In this case we use the notation S ⊂ G. The face set of S,
denoted by F (S), is defined as the subset of F (G) such that f ∈ F (S) if and
only if f ∈ F (G) and f is the closure of a component of R2 \S. This notation is
a little bit confusing, since F (S) in fact means the intersection of F (G) and the
face set of S (closures of the components of R2 \S). Thus if f ∈ F (S), we must
have V (G)∩f = V (S)∩f . A subgraph S ⊂ G is called simply connected if it is
connected and its Euler characteristic is one; i.e., |V (S)|+ |F (S)| − |E(S)| = 1
if S is finite.

We finish this section by deriving a formula to be used later. Let S be a finite
simply connected subgraph of G, and let bd(S) be the edges in E(S) such that
e ⊂ ∂f for some f ∈ F (G) \F (S). Then it is easy to see that e ∈ bd(S) only if
there is at most one f ∈ F (S) such that e ⊂ ∂f . If e ∈ E(S) \ bd(S), there are
exactly two such f ’s. Therefore we have

∑

f∈F (S) deg f ≤ 2|E(S)| − |bd(S)|.

Now because deg f ≥ 3 for all f ∈ F (G), which comes from the simplicity of
G, we have

3|F (S)| ≤
∑

f∈F (S)

deg f ≤ 2|E(S)| − |bd(S)|.

Note that S is simply connected. Thus

|E(S)|+ 1 = |V (S)|+ |F (S)| ≤ |V (S)|+
2

3
· |E(S)| −

1

3
· |bd(S)|,

or |E(S)| ≤ 3|V (S)| − |bd(S)| − 3. Therefore

(2.1) |F (S)| = |E(S)| − |V (S)|+ 1 ≤ 2|V (S)| − |bd(S)| − 2,

which is what we wanted to derive.

3. Rough isometries and Aleksandrov surfaces

Let X and Y be metric spaces with metrics dX and dY , respectively.

Definition 3.1. A map m : X → Y is called a rough isometry, or a quasi-

isometry, if there exist constants A ≥ 1, B ≥ 0, and ǫ > 0 such that

(1) A−1 dX(a, b)−B ≤ dY (m(a),m(b)) ≤ A dX(a, b) +B for all a, b ∈ X ;
(2) the ǫ-neighborhood of m(X) covers Y .

If there exists a rough isometry between X and Y , we say that X and Y are
roughly isometric.

It is not difficult to see that rough isometries define an equivalence rela-
tion on metric spaces. The notion of rough isometries was first introduced by
M. Gromov [6] and M. Kanai [9].

A metric space is called intrinsic if the distance between every two points is
equal to the infimum of the lengths of the curves connecting these points, and
an intrinsic metric space is called geodesic if every two points can be joined
by a curve whose length is the same as the distance between the points. One
may check using the Arzelá-Ascoli Theorem that a complete locally compact
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intrinsic space is actually geodesic. Therefore every connected graph G with
deg v < ∞ for every v ∈ V (G) is a geodesic space if it is equipped with the
simplicial metric.

Theorem 3.2 ([4], Theorem 2.2). Suppose X and Y are geodesic metric spaces

that are roughly isometric to each other. Then X is Gromov hyperbolic if and

only if Y is Gromov hyperbolic.

Second subject of this section is Aleksandrov surfaces. However, because the
precise definition of Aleksandrov surfaces is a little bit complicated, those who
do not have any background knowledge about this concept may skip the defi-
nition, and accept the following well known statement: if a surface is obtained
by pasting Euclidean polygons along sides of equal length, then it becomes a
polyhedral surface, a typical example of Aleksandrov surfaces. In fact, this is
all we need in this paper related to the definition of Aleksandrov surfaces.

Among many equivalent definitions for Aleksandrov surfaces we will use the
analytic definition given in [13, §7], because it is shorter than the others. With
the terminology Aleksandrov surface, we mean a two dimensional orientable
topological manifold with an intrinsic metric whose length element is locally
expressed in the form

eu(z)|dz|,

where z is a local complex coordinate and u is a difference between two sub-
harmonic functions such that expu(z) is locally integrable on rectifiable curves
in the z-plane.

There are two typical subclasses of Aleksandrov surfaces. Two dimensional
Riemannian manifolds are thoses in the first class, and as indicated above,
surfaces with polyhedral metrics are in the second class. A surface with a
polyhedral metric, or a polyhedral surface, is a surface such that each point of
it is locally isometric to a cone with the length element

|z|α−1|dz|

for some α > 0. To study more about Aleksandrov surfaces or polyhedral
surfaces, see for example [1, 10, 11, 13].

In the next section we will construct a geodesic polyhedral surface S that is
roughly isometric to the given graph G. Then in order to prove Theorem 1.1,
it will suffice to show that this polyhedral surface S is Gromov hyperbolic.
Note that this comes from Theorem 3.2. On the other hand, we will show that
the condition h(G) > 0 implies the inequality h1(S) > 0, where h1(S) denotes
Cheeger’s constant of S defined by

h1(S) = inf
D

(

Length(∂D)

Area(D)

)

.

Here the infimum is taken over all Jordan domainsD ⊂ S satisfying Area(D) <
∞. Then the following theorem will finish the proof.
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Theorem 3.3 (Gromov). Every open simply connected Aleksandrov surface

which satisfies a linear isoperimetric inequality is Gromov hyperbolic.

A surface S is said to satisfy a linear isoperimetric inequality if h1(S) > 0.
Also note that a surface without boundary is called open if it is not compact.
Hence a simply connected surface is open if and only if it is topologically
equivalent to the Euclidean plane. Theorem 3.3 was proved in [4, Chapter 6]
when the surface is a two dimensional complete simply connected Riemannian

manifolds, and then it was slightly extended in [11] to general simply connected
Aleksandrov surfaces, even without the assumption about completeness.

The following two elementary lemmas will be used in the subsequent sections.

Lemma 3.4. For k ∈ {3, 4, . . . , N}, suppose f is a regular k-gon in R
2 of side

length one, and γ is a simple piecewise smooth arc in f with the endpoints on

∂f . Among the two subarcs of ∂f divided by the endpoints of γ, let λ be the

subarc that contains less vertices of f . If both subarcs have the same number

of vertices, we can choose either one. Then the following inequality holds:

(3.1) Length(λ) ≤ N · Length(γ).

Proof. It is easy to see that the inequality (3.1) holds with 1 in place of N if
the endpoints of γ, which we denote by x and y, are on the same side of f . If λ
contains more than one vertex, then the distance between x and y is definitely
greater than one. But since Length(λ) ≤ N , we have

Length(λ) ≤ N = N · 1 ≤ N · ‖x− y‖ ≤ N · Length(γ).

y

z

x z

x
w

y

f

γ

Figure 3. A curve γ with endpoints on ∂f , and the associated triangle

Now it remains the case when λ contains only one vertex, say z. Consider
the triangle with vertices x, y, and z, and let w be the intersection point of the
side xy and the bisector of ∠z. Then we have

π

6
≤ ∠xzw ≤

π

2
,
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hence sin(∠xzw) ≥ 1/2. Therefore,

‖x− z‖ =
sin(∠zwx)

sin(∠xzw)
· ‖x− w‖ ≤ 2‖x− w‖,

and similarly ‖y − z‖ ≤ 2‖y − w‖. Now we see that

Length(λ) = ‖x− z‖+ ‖y − z‖ ≤ 2‖x− w‖ + 2‖y − w‖

= 2‖x− y‖ ≤ 2 · Length(γ),

as desired. �

Lemma 3.5. For k ∈ {3, 4, . . . , N}, suppose f is a regular k-gon in R
2 of side

length one, and let D be a subset of f with piecewise smooth boundary. Then

there exists C = C(N) such that

(3.2) Area(D) ≤ C · Length(∂D).

Proof. If Length(∂D) ≤ 1, then the isoperimetric inequality in R
2 implies that

Area(D) ≤
1

4π
· {Length(∂D)}2 ≤

1

4π
· Length(∂D).

If Length(∂D) ≥ 1, then we have (3.2) with C equal to

(3.3) C0 :=
N

4
· cot

( π

N

)

,

since D ⊂ f and Area(f) is bounded by (3.3), the area of a regular N -gon of
side length one. �

4. The Aleksandrov surface constructed from G

Suppose G is a planar graph such that every face of G is at most N -gon for
some N ∈ N. We also assume that G does not have any cut-vertices, so that
every face of G is homeomorphic to the closed unit disk. Then for each face
of G which is a k-gon, k ≤ N , we associate a copy of a Euclidean regular k-
gon of side length one, and paste those regular polygons along sides exactly in
the same way as the faces of G are pasted. This is possible since all polygons
considered here have the same side lengths (= 1). Now let us denote this
obtained surface by S.

The surface S is locally Euclidean possibly except at the vertices of pasted
polygons. Therefore the natural metric on S is the intrinsic metric inherited
from this locally Euclidean metric; i.e., the distance between two points x, y ∈ S
is defined by the infimum of the lengths of the curves connecting x and y, and
the area of a Borel set D is defined by

∑

f Area(f ∩D), where the sum is over

all the polygons f ∈ F (G). Then because G was originally embedded into
R

2 locally finitely, S becomes a complete locally compact polyhedral surface.
Therefore as we explained in the previous section, S becomes a geodesic metric
space. Moreover, G is naturally embedded into S, thus we can treat G as a
subset of S.
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From now on, we will regard a face of G as a subset of S. Similarly, the
notations Length(·) and Area(·) will denote the S-length and the S-area of the
considered objects, respectively, lying in S.

Lemma 4.1. The inclusion map ι : G →֒ S, defined by ι(x) = x for x ∈ G, is

a rough isometry.

Proof. It is easy to see that ι is a local isometry except at the vertices of G.
Now in order to prove the lemma, let dG and dS be the intrinsic metrics on G
and S, respectively. Then dS(x, y) ≤ dG(x, y) for every x, y ∈ G. Furthermore,
S is definitely contained in the N -neighborhood of G, since every point in a
regular k-gon, k ≤ N , of side length one has a distance less than N from the
boundary of the polygon. Therefore, to prove that ι is a rough isometry, it
suffices to show that dG(x, y) ≤ C · dS(x, y) for every x, y ∈ G, where C is a
constant independent of the choices of x and y.

Suppose x, y ∈ G ⊂ S are given. Since S is a geodesic space, there exists a
curve γ ⊂ S connecting x and y such that Length(γ) = dS(x, y). Then there
exists a sequence of points x = x0, x1, . . . , xm−1, xm = y on γ∩G such that the
subarc of γ connecting xj and xj+1 lies on a face ofG for each j = 0, 1, . . . ,m−1.
But Lemma 3.4 implies that dG(xj , xj+1) ≤ N · dS(xj , xj+1), hence we have

dG(x, y) ≤
m−1
∑

j=0

dG(xj , xj+1) ≤ N

m−1
∑

j=0

dS(xj , xj+1) = N · dS(x, y),

showing that G and S are roughly isometric. �

For D ⊂ S, recall that the interior, closure, and boundary of D are denoted
by D◦, D, and ∂D, respectively.

Lemma 4.2. Suppose h(G) > 0 and the degrees of the faces of G are bounded

above by N . Let D be an open set in S consisting of a finite number of faces;
i.e., D is of the form

(4.1) D = (f1 ∪ f2 ∪ · · · ∪ fℓ)
◦

for some f1, f2, . . . , fℓ ∈ F (G). Then there exists a constant C such that

(4.2) Area(D) ≤ C · Length(∂D).

The constant C depends only on N and h(G).

Proof. By considering each component of D separately, and then by adding to
D all the bounded components of S \D if necessary, we may assume that D is
simply connected. Let T be the maximal subgraph of G contained in D. That
is, we assume that T is the graph consisting of edges and vertices in D. Also
let bd(T ) be the set of edges of T lying on ∂D. Then because D consists of
faces, this definition coincides with the one given in Section 2; i.e., e ∈ bd(T ) if
and only if e ∈ ∂f for some f ∈ F (G) \ F (S). Therefore, because D is simply
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connected, the number of vertices in dT is the same as the number of edges in
bd(T ). But because every edge has length one, we must have

|dT | = |bd(T )| = Length(∂D).

On the other hand, we know that every face is at most N -gon, hence the area
of each face is at most C0, where the constant C0 was defined in (3.3). Since
f ⊂ D if and only if f ∈ F (T ), we have from (2.1) that

Area(D) =
∑

f∈F (T )

Area(f) ≤ C0|F (T )| ≤ C0(2 |V (T )| − |bd(T )| − 2)

≤ C0

(

2

h(G)
|dT | − |bd(T )|

)

=
C0

(

2− h(G)
)

h(G)
|bd(T )|

=
C0

(

2− h(G)
)

h(G)
· Length(∂D),

as desired. �

5. Proof of Theorem 1.1

In this section we will first reduce Theorem 1.1 to the case when graphs in
consideration have no cut-vertices. To do this, suppose G0 is a planar graph
satisfying the assumptions in Theorem 1.1. Then there exist a natural number
N such that deg f ≤ N for every f ∈ F (G0), and we have |V (S)| ≤ c|dS| for
every finite subgraph S ⊂ G0, where c = h(G0)

−1.
Let {f1, f2, . . .} be an enumeration of F (G0), and suppose g1 is the open face

of G0 corresponding to f1. If ∂g1 is a simple cycle, we set G1 := G0. If not,
we choose a repeated vertex v ∈ ∂g1 lying on the boundary of the unbounded
component of R2 \ g1. Note that such v must exist, and there could be more
than one such vertex. Then because v is a cut-vertex of G0, G0 \ {v} has
two or more components. However, all such components except one should
be finite, because G0 is embedded into R

2 locally finitely. Now we claim that
every finite component of G0 \ {v} contains at most c = h(G0)

−1 vertices. In
fact, if T ′ is a finite component of G0 \ {v}, then T := T ′ = T ′ ∪ {v} should be
a finite subgraph of G0 with dT = {v}. Therefore, because h(G0) > 0, we have
|V (T )| ≤ c|dT | = c, proving the claim. This implies that if we remove from
G0 all the finite components of G0 \ {v}, and if we do the same thing to every
repeated vertices on ∂g1 that is also lying on the boundary of the unbounded
component of R2 \g1, then the obtained graph G1 is an infinite subgraph of G0

such that its c-neighborhood contains G0. We also remark that face degrees
of G1 are uniformly bounded, because they are at most the maximum of face
degrees of G0. This is true no matter whether we define the face degree of
f ∈ F (G0) as the length of ∂f , or as the length of the boundary cycle of the
corresponding open face.

Suppose we have constructed Gj−1 for some j ∈ N. We then choose the
smallest natural number nj such that the face fnj

is in F (Gj−1) as well as in
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F (G0), and has not been used in the construction of G1, G2, . . . , Gj−1. Note
that some faces of G0 might not be in the face set of Gj−1 if it was enclosed by
fni

for some i ∈ {1, 2, . . . , j−1}, so we require fnj
to be a face in F (Gj−1). Now

we repeat the same procedure as above: if ∂gnj
is a simple cycle, where gnj

is
the open face corresponding to fnj

, then we set Gj := Gj−1; if not, we remove
all the finite components of Gj−1 \ {v} for every repeated vertex v of ∂gnj

that

also lies on the boundary of the unbounded component of R2 \ gnj
, and we

obtain a new graph Gj . Then because we use different faces in every step, Gj

must be an infinite subgraph of G0 such that its c-neighborhood contains G0.
Moreover, face degrees of Gj are at most the maximum of face degrees of G0.

We repeat this process and obtain a sequence of graphs {Gj} such that

G0 ⊃ G1 ⊃ G2 ⊃ · · · .

Then by the construction one can see that the graph G :=
⋂∞

i=0 Gj is an infinite
subgraph of G0 such that its c-neighborhood contains G0. Moreover for every
two points x, y ∈ G, the G-distance between x and y is the same as G0-distance
between x and y, because each part we have removed from G0 was connected
to G0 only through one cut-vertex, hence a geodesic curve between x and y
cannot go inside the removed parts. Thus the inclusion map ι : G →֒ G0 is a
rough isometry, hence Theorem 3.2 implies that G is Gromov hyperbolic if and
only if G0 is Gromov hyperbolic. Moreover, face degrees of G are at most the
maximum of face degrees of G0, so they are uniformly bounded.

We next claim that h(G) > 0. To see this, suppose S is a finite subgraph of
G ⊂ G0, and let dS and d0S be the vertex boundaries of S as a subgraph of
G and G0, respectively. Then definitely dS ⊂ d0S. However, if we define S0

as the union of S and all the finite components of G0 \ S, then S0 becomes a
subgraph of G0 satisfying dS ⊃ d0S0. Therefore, because h(G0) > 0,

|V (S)| ≤ |V (S0)| ≤ h(G0)
−1|d0S0| ≤ h(G0)

−1|dS|.

Since S is an arbitrary finite subgraph ofG, we have h(G) ≥ h(G0) > 0, proving
the claim. Finally, by the construction every closed face of G is homeomorphic
to the closed unit disk, so one may check without difficulties that G has no
cut-vertices.

Now by assuming that G has no cut vertices, we prove Theorem 1.1. For
this, let us sketch our strategy discussed before. Let S be the polyhedral surface
constructed from G as in the previous section. Then since both G and S are
geodesic metric spaces and they are roughly isometric by Lemma 4.1, we see
from Theorem 3.2 that Gromov hyperbolicity of S implies that of G. On the
other hand, Theorem 3.3 says that Gromov hyperbolicity of S comes from a
linear isoperimetric inequality on S. Therefore in order to prove Theorem 1.1,
we only need to show h1(S) > 0 as explained in Section 3. Equivalently, all we
have to show is an inequality of the form

(5.1) Area(D) ≤ C · Length(∂D)
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for some constant C independent of D, where D is an arbitrary Jordan domain
in S.

For (5.1) we will apply a method similar to the one used in [10]. Suppose
V is an open set in S such that ∂V is piecewise smooth. Also suppose that
for some f ∈ F (G) we have V ∩ f◦ 6= ∅, and (f◦ ∩ ∂V ) =

⋃n

k=1 γk, where
γk’s are disjoint piecewise smooth simple curves meeting ∂f at their endpoints
but not at any other points of the curves. Then each γk divides ∂f into two
subarcs. Among these two subarcs of ∂f , let λk be the one containing less or
the same number of vertices of f as in Lemma 3.4. Also let fk be the closure
of the component of f \ γk that is enclosed by γk and λk; i.e., fk must satisfy
∂fk = γk ∪ λk. In these notations, we have from Lemma 3.4 that

(5.2)
n
∑

k=1

Length(λk) ≤ N ·
n
∑

k=1

Length(γk) = N · Length(f◦ ∩ ∂V ),

because f is a k-gon for some k ∈ {3, 4, . . . , N}. Similarly Lemmas 3.4 and 3.5
imply that

(5.3)

n
∑

k=1

Area(fk) ≤ C0 ·
n
∑

k=1

Length(∂fk)

=C0 ·
n
∑

k=1

Length(γk ∪ λk) ≤ C0(1 +N) · Length(f◦ ∩ ∂V ),

where C0 is the constant in (3.3). Note that C0 depends only on N , and
C0 ≥ 1/(4π) since N ≥ 3.

We claim that one of the following holds: either (∂f ∩ V ) ⊂
⋃n

k=1 λk, or

(∂f \ V ) ⊂
⋃n

k=1 λk. If this were not true, there would exist x ∈ ∂f ∩ V and

y ∈ ∂f \ V with x, y /∈
⋃n

k=1 λk. Then since x ∈ V and y /∈ V , x and y must
be separated by ∂V . This means that there exists j ∈ {1, 2, . . . , n} such that
γj separates x and y inside f , thus we must have x ∈ λj or y ∈ λj by the
definition of λj . This contradicts our assumption, hence the claim has been
proved.

We next claim that if (∂f \ V ) 6⊂
⋃n

k=1 λk, then (V ∩ f) ⊂
⋃n

k=1 fk. To

prove this second claim, suppose there exists y ∈ ∂f \V such that y /∈
⋃n

k=1 λk.
Then for each x ∈ V ∩ f , a similar argument as above shows that there exists
j ∈ {1, 2, . . . , n} with γj separating x and y inside f . Thus we have either
x ∈ fj or y ∈ fj. But since y /∈ λj = fj ∩ ∂f and y ∈ ∂f , it must be true that
y /∈ fj . We conclude that x ∈ fj ⊂

⋃n

k=1 fk, and this proves the claim since
x ∈ V ∩ f is arbitrary.

Define U = V ∪ f◦ if (∂f \ V ) ⊂
⋃n

k=1 λk, and U = V \ f otherwise. Then
we must have

Length(∂U) ≤ Length(∂V ) + C1 · Length(f
◦ ∩ ∂V ) and(5.4)

Area(U) ≥ Area(V )− C1 · Length(f
◦ ∩ ∂V )(5.5)
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for some constant C1 = C1(N). To verify these inequalities, we first consider
the case U = V \ f ; i.e., the case when (∂f \ V ) 6⊂

⋃n

k=1 λk. Then we have

(∂f ∩V ) ⊂
⋃n

k=1 λk by the first claim above. But since ∂U ⊂
(

∂V ∪ (∂f ∩V )
)

,
we obtain from (5.2) that

Length(∂U) ≤ Length(∂V ) + Length(∂f ∩ V )

≤ Length(∂V ) +

n
∑

k=1

Length(λk) ≤ Length(∂V ) +N · Length(f◦ ∩ ∂V ),

so the inequality (5.4) is satisfied. On the other hand, because (V ∩ f) ⊂
⋃n

k=1 fk by the second claim above, we have from (5.3) that

Area(V ∩ f) ≤
n
∑

k=1

Area(fk) ≤ C0(1 +N) · Length(f◦ ∩ ∂V ).

Now (5.5) follows because Area(U) = Area(V )−Area(V ∩f). We next consider
the case U = V ∪ f◦. But in this case we have (∂f \ V ) ⊂

⋃n

k=1 λk by the
definition of U . Thus (5.4) comes from (5.2) and a computation similar to the
above, because ∂U ⊂ ∂V ∪ (∂f \V ). Finally one can easily see that (5.5) holds
in this case, since Area(U) ≥ Area(V ).

By summarizing all of these, we obtain the following lemma.

Lemma 5.1. Let V ⊂ S be an open set such that ∂V is piecewise smooth,

and suppose f ∈ F (G) is a face such that f◦ ∩ ∂V is nonempty and consists of

finitely many disjoint simple arcs with endpoints on ∂f . Then by either adding

f◦ to V or subtracting f from V , we obtain another open set U satisfying the

inequalities (5.4) and (5.5).

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose G is a planar graph such that h(G) > 0 and
deg f ≤ N for all f ∈ F (G), where N ∈ N is as before. Then as we discussed
at the beginning of this section, we may assume that G is a graph without
cut-vertices, and then verifying a linear isoperimetric inequality (5.1) on S will
prove Theorem 1.1, where the constant C in (5.1) should be independent of
the Jordan domain D ⊂ S. Thus suppose that a Jordan domain D ⊂ S is
given. Then without loss of generality we may assume that ∂D is piecewise
smooth, since otherwise we can approximate D by domains with piecewise
smooth boundaries. Moreover in this approximation we can make the inequality
(5.1) remain valid without changing the constant C. Similarly, we can assume
that ∂D meets G only at finitely many points. Under these assumptions, one
can easily check that there are only finitely many faces f1, f2, . . . , fn ∈ F (G)
such that f◦

j ∩ ∂D 6= ∅, j = 1, 2, . . . , n. Moreover for each j ∈ {1, 2, . . . , n}, we
can assume that f◦

j ∩ ∂D is a disjoint union of piecewise smooth simple arcs
with endpoints on ∂fj. Therefore we can apply Lemma 5.1 to D0 := D and
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f1, hence either by adding f◦
1 to D or by subtracting f1 from D, we obtain D1

satisfying

Length(∂Dj+1) ≤ Length(∂Dj) + C1 · Length(f
◦
j+1 ∩ ∂Dj) and(5.6)

Area(Dj+1) ≥ Area(Dj)− C1 · Length(f
◦
j+1 ∩ ∂Dj)(5.7)

for j = 0.
Suppose we have obtained D0, D1, . . . , Dk that satisfy the inequalities (5.6)

and (5.7) for all j = 0, 1, . . . , k−1. If k < n, then because the interiors of fj ’s are
all disjoint, one can easily check that Dk and fk+1 also satisfy the assumptions
in Lemma 5.1. Therefore we can obtain Dk+1, either by adding f◦

k+1 to Dk

or by subtracting fk+1 from Dk, so that they satisfy the inequalities (5.6) and
(5.7) for j = k. Now we repeat this process until we obtain a sequence of open
sets D0, D1, . . . , Dn, which satisfy (5.6) and (5.7) for all j = 0, 1, . . . , n− 1.

Note that Dn must consist of faces. That is, Dn must satisfy the assumption
(about D) of Lemma 4.2, since from the construction there is no f ∈ F (G) such
that f◦ ∩ ∂Dn 6= ∅. Thus there exists a constant C2 depending only on N and
h(G) such that Area(Dn) ≤ C2 ·Length(∂Dn). Also recall that the interiors of
fj ’s are mutually disjoint, thus we must have

(5.8)

n−1
∑

j=0

Length(f◦
j+1 ∩ ∂Dj) ≤ Length(∂D).

Therefore from (5.6), (5.7), and (5.8) we have

Area(D) = Area(D0) ≤ Area(D1) + C1 · Length(f
◦
1 ∩ ∂D0)

≤Area(D2) + C1 · Length(f
◦
1 ∩ ∂D0) + C1 · Length(f

◦
2 ∩ ∂D1)

...

≤Area(Dn) + C1 ·
n−1
∑

j=0

Length(f◦
j+1 ∩ ∂Dj)

≤C2 · Length(∂Dn) + C1 · Length(∂D)

≤C2 · Length(∂Dn−1) + C2C1 · Length(f
◦
n ∩ ∂Dn−1) + C1 · Length(∂D)

...

≤C2 · Length(∂D0) + C2C1

n−1
∑

j=0

Length(f◦
j+1 ∩ ∂Dj) + C1 · Length(∂D)

≤ (C2 + C2C1 + C1) · Length(∂D),

showing the inequality (5.1). Since both C1 and C2 are independent of D, this
completes the proof of Theorem 1.1. �
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