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THE STRONG MORI PROPERTY

IN RINGS WITH ZERO DIVISORS

Dechuan Zhou and Fanggui Wang

Abstract. An SM domain is an integral domain which satisfies the as-
cending chain condition on w-ideals. Then an SM domain also satisfies
the descending chain condition on those chains of v-ideals whose intersec-
tion is not zero. In this paper, a study is begun to extend these properties
to commutative rings with zero divisors. A Q0-SM ring is defined to be a
ring which satisfies the ascending chain condition on semiregular w-ideals
and satisfies the descending chain condition on those chains of semiregular
v-ideals whose intersection is semiregular. In this paper, some properties

of Q0-SM rings are discussed and examples are provided to show the dif-
ference between Q0-SM rings and SM rings and the difference between
Q0-SM rings and Q0-Mori rings.

1. Introduction

In this paper, we assume that R is a commutative ring with an identity and
S is a multiplicatively closed set of R. Let Z(R) denote the set of zero divisors
of R and let T (R) be the total quotient ring of R.

Let I be an ideal of R. Then I is called a regular ideal if I contains a
regular element and I is called a semiregular ideal of R if I contains a finitely
generated ideal I0 which has no nonzero annihilator. Let S0 denote the set of
finitely generated semiregular ideals. T. Lucas used semiregular ideals to define
the ring of finite fractions Q0(R) and tried to use Q0(R) instead of the quotient
field of a domain to research multiplicative ideal theory of commutative rings
with zero divisors, where

Q0(R) = {u ∈ T (R[X ]) | Iu ⊆ R for some I ∈ S0}.

If u is an element of Q0(R), then u can be written in the form u =
∑

n

i=0
aiX

i

∑
n

i=0
biXi ∈

T (R[X ]) with aibj = ajbi for each i and j. If each semiregular ideal of R is
regular, then Q0(R) = T (R).
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For a domain D with the quotient field K, an ideal I of D is called a v-
ideal if (I−1)−1 = I, where I−1 = {x ∈ K |xI ⊆ R}. A Mori domain, i.e.,
a domain which satisfies the ascending chain condition on v-ideals, has many
good properties and various researchers have focused on it. The definition of
Mori domains is analogous to that of Noetherian domains, but many classical
theorems on Noetherian domains cannot be generalized to Mori domains. In
order to give a description in the star operation theory corresponding to the
classical theory of Noetherian domains, in 1997, Wang and McCasland gave
the definitions of the w-operation and SM domains (strong Mori domains) [8,
Definition 2 and Definition 4]. Let J be a finitely generated ideal of a domainD.
If J−1 = D, then J is called a GV-ideal, denoted by J ∈GV(D). A torsion-free
module M is called a w-module of D if whenever Jx ⊆ M for some J ∈ GV(D)
and x ∈ K

⊗
D M , then x ∈ M . An SM domain is an integral domain which

satisfies the ascending chain condition on w-ideals. Wang and McCasland also
have shown that SM domains satisfy the Principal Ideal Theorem [9, Corollary
1.11], the Hilbert Basis Theorem [9, Theorem 1.13] and the Krull Intersection
Theorem [9, Theorem 1.8] (Note that these three theorems do not hold for Mori
domains in general).

In 2004, T. Lucas introduced the Q0-Mori ring and discussed the Mori prop-
erty in commutative rings with zero divisors. The Q0-Mori ring is defined to
be a ring which satisfies ACC (i.e., the ascending chain condition) on semireg-
ular v-ideals and satisfies the restricted DCC on semiregular v-ideals (i.e., the
descending chain condition on those chains of semiregular v-ideals whose in-
tersection is semiregular) (see [5, page 1]), where a semiregular v-ideal is not
only a semiregular ideal but also a v-ideal. Following his idea, in this paper,
the definition of Q0-SM rings is provided and we use Q0(R) to discuss the SM
property in commutative rings with zero divisors.

2. The reducible property of commutative rings

We say that an R-module B ⊆ Q0(R) is a fractional ideal of R if there is
a semiregular ideal I ⊆ R such that IB ⊆ R. If, in addition, B contains an
element that is not a zero divisor and there is a regular element r ∈ R such
that rB ⊆ R, then it is a regular fractional ideal of R. For B to be considered
a semiregular fractional ideal, B must contain a finitely generated fractional
ideal that has no nonzero annihilator and there must be a semiregular ideal I
of R such that IB ⊆ R.

We let

R〈S〉 = {q ∈ Q0(R) | rq ∈ R for some r ∈ S}.

It is clear that R〈S〉 is a ring and we call R〈S〉 the Q0-quotient ring with respect

to S. For an ideal I of R, we set

I〈S〉 = {q ∈ R〈S〉 | rq ∈ I for some r ∈ S}.
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For a prime ideal P of R, S = R \ P is a multiplicatively closed set, then we
consider R〈S〉 as R〈P 〉 and consider I〈S〉 as I〈P 〉. Here we call R〈P 〉 the Q0-
quotient ring with respect to P . It is easy to see that if I is not contained in
P , then I〈P 〉 = R〈P 〉.

Definition 2.1. Let A ⊆ Q0(R) be an R-module. Then A is called an S-
reducible module if whenever sx ∈ A where s ∈ S and x ∈ Q0(R), we have
x ∈ A. For a prime ideal P of R and S = R \ P , we say that A is P -reducible
if A is S-reducible.

For R and S, R may not be its own S-reducible ideal. For example, let R
be the ring of integers Z and S = R \ {0}. Then Q0(R) = Q where Q is the
rational number field. We choose s ∈ S and 1/s ∈ Q0(R), then s · 1

s
= 1 ∈ R,

but 1/s /∈ R. We also have that not all R〈S〉-modules are S-reducible. For

example, let s ∈ R, s 6= 0 and s2 = 0. Then S = {0, 1, s} is a multiplicatively
closed set of R. Clearly, C = 0 is an R〈S〉-module. Since ss = 0 ∈ C and s /∈ C,
we have C is not S-reducible.

Lemma 2.2. Let S be a multiplicatively closed set in R.

(1) Let A be an ideal of R〈S〉 and let B = A ∩R. Then A ⊆ B〈S〉.

(2) I is a proper S-reducible ideal of R〈S〉 if and only if I = I〈S〉 = (I∩R)〈S〉

and I ∩ S = ∅.
(3) If A is a proper ideal of R, then A〈S〉is an S-reducible ideal of R〈S〉 and

A〈S〉 = (A〈S〉)〈S〉.

In order to discuss the relationship between reducible ideals and w-ideals,
we need to know the concept of w-modules of commutative rings in [10]. Let
J be a finitely generated ideal of R. If the natural homomorphism ϕ : R →
J∗ = HomR(J,R) is an isomorphism, then J is called a GV-ideal, denoted by
J ∈GV(R). An R-module M is called a GV-torsion-free module if whenever
Jx = 0 for some J ∈ GV(R) and x ∈ M , we have x = 0. A GV-torsion-free
module M is called a w-module if Ext1R(R/J,M) = 0 for each J ∈ GV(R) and
the w-envelope of M is the set given by

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈GV(R)},

where E(M) is the injective hull of M . Therefore M is a w-module if and only
if Mw = M . In this paper, let w-Max(R) denote the set of all maximal w-ideals
of R. For R, there is at least one maximal w-ideal and each maximal w-ideal
is prime.

Lemma 2.3. Let P be a prime w-ideal of R. If I is a P -reducible ideal of

R〈P 〉, then I is a w-module of R.

Proof. Let x ∈ Iw. Then there is some J ∈GV(R) such that Jx ⊆ I. Since
J * P , there is some s ∈ J \ P such that sx ∈ I. Because Iw ⊆ (Q0(R))w =
Q0(R) and I is P -reducible, we have x ∈ I. Thus I is a w-module of R. �
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Theorem 2.4. Let P be a prime w-ideal of R. If R satisfies ACC on semireg-

ular w-ideals, then R〈P 〉 satisfies ACC on semiregular P -reducible ideals.

Proof. Let I be a semiregular P -reducible ideal of R〈P 〉 and let A = I ∩R. We
first show that A is a semiregular w-ideal of R. Let B = (b1, b2, . . . , bn) ⊆ I
be a finitely generated semiregular ideal of R〈P 〉. Then for each i there is a
finitely generated semiregular ideal Iαi

of R such that biIαi
⊆ R. Let I0 =

Iα1
Iα2

· · · Iαn
. Then I0 is also a semiregular ideal of R and BI0 ⊆ I ∩ R =

A. Since BI0 is a finitely generated semiregular ideal of R, we have A is
semiregular. By Lemma 2.3, I is a w-module of R. We have A is a w-ideal of
R.

Let {In} be an ascending chain of semiregular P -reducible ideals of R〈P 〉.
Then {In ∩ R} is an ascending chain of semiregular w-ideals of R. Let Ai =
Ii ∩ R. There is an integer n such that Ik ∩ R = In ∩ R for each k ≥ n.
So (Ak)〈P 〉 = (An)〈P 〉. Because Ii is a P -reducible ideal, Ii = (Ii ∩ R)〈P 〉 =
(Ai)〈P 〉 by Lemma 2.2(2). Then Ik = In. It follows that R〈P 〉 satisfies ACC on
semiregular P -reducible ideals. �

For a semiregular fractional ideal I, let I−1 = (R : I) = {t ∈ Q0(R) | tI ⊆ R}
and let Iv = (I−1)−1. Then it is easy to show that (R : I) is a semiregular
fractional ideal as well and (R : I) = (R : I)v. Set It =

⋃
(I0)v with the union

taken over the finitely generated fractional ideals that are contained in I (see
[5, Introduction]). If I = Iv (resp., I = It), then I is said to be a v-fractional
ideal (resp., t-fractional ideal). For each semiregular fractional ideal I, we have
Iw ⊆ It ⊆ Iv and if I is finitely generated, we have Iv = It.

For a finitely generated semiregular ideal J of R, J is a GV-ideal if and only
if J−1 = R. Let M be a semiregular prime ideal of R. Then M is a maximal
w-ideal if and only if M is a maximal t-ideal. We use t-Max(R) to denote the
set of all maximal t-ideals of R.

Lemma 2.5 ([5, Lemma 2.15]). Let I be a semiregular ideal of R.

(1) If I is a v-ideal, then I =
⋂
{(I〈M〉)v |M ∈ t-Max(R)}.

(2) If I is finitely generated, then Iv =
⋂
{(I〈M〉)v |M ∈ t-Max(R)}.

Lemma 2.6. Let A and B be semiregular w-ideals of R. Then A = B if and

only if A〈M〉 = B〈M〉 for each semiregular maximal w-ideal M .

Proof. Let x ∈ A and let I = {r ∈ R | rx ∈ B}. It is easy to show that I is
a semiregular w-ideal of R and I * M for each semiregular maximal w-ideal
M , so I = R. Hence we can get x ∈ B, which implies A ⊆ B. We can prove
B ⊆ A in the same way. �

Theorem 2.7. Let R be a ring in which each semiregular ideal is contained in

at most finitely many maximal w-ideals.
(1) If for each semiregular maximal w-ideal M , R〈M〉 satisfies ACC on

semiregular M -reducible ideals, then R satisfies ACC on semiregular w-ideals.
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(2) If for each semiregular maximal w-ideal M , R〈M〉 satisfies the restricted

DCC on semiregular v-ideals, then R satisfies the restricted DCC on semireg-

ular v-ideals.

Proof. (1) Let I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · be a chain of semiregular w-ideals of
R and let M1,M2, . . . ,Mt be the semiregular maximal w-ideals that contain
I1. For each Mi, (I1)〈Mi〉 ⊆ (I2)〈Mi〉 ⊆ · · · ⊆ (In)〈Mi〉 ⊆ · · · is a chain of
semiregular Mi-reducible ideals of R〈Mi〉. Thus there is an integer ni such that
(Ini

)〈Mi〉 = (Ik)〈Mi〉 for each k ≥ ni. Let n = Max{n1, n2, . . . , nt}. Then for
each Mi and k ≥ n, (In)〈Mi〉 = (Ik)〈Mi〉. For all other semiregular maximal
w-ideals M , we have (In)〈M〉 = R〈M〉 = (Ik)〈M〉, so (In)〈M〉 = (Ik)〈M〉 for each
semiregular maximal w-ideal M . Hence In = Ik by Lemma 2.6.

(2) Let I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · be a chain of semiregular v-ideals of R
with

⋂
In semiregular and let I =

⋂
In. Then I is contained in only finitely

many semiregular maximal w-ideals. As above let M1,M2, . . . ,Mt denote these
ideals. For each Mi, ((I1)〈Mi〉)v ⊇ ((I2)〈Mi〉)v ⊇ · · · ⊇ ((In)〈Mi〉)v ⊇ · · · is a
chain of semiregular v-ideals of R〈Mi〉 with

⋂
((In)〈Mi〉)v semiregular. In each

ring R〈Mi〉 there is an integer mi such that ((Imi
)〈Mi〉)v = ((Ik)〈Mi〉)v for each

k ≥ mi. Let m = Max{m1,m2, . . . ,mt}. Then ((Im)〈Mi〉)v = ((Ik)〈Mi〉)v
for each k ≥ m. For all other semiregular maximal w-ideals N we have
((Im)〈N〉)v = R〈N〉 = ((Ik)〈N〉)v. Since semiregular maximal w-ideals are equal
to semiregular maximal t-ideals, Ik = Im by Lemma 2.5(1). �

3. Q0-SM rings

In this section, we need the concept of finite-type R-modules in [7]. Now, we
introduce this concept. Let B and N be R-modules and let f ∈ HomR(B,N).
If for each maximal w-ideal M of R, fM : BM → NM is a monomorphism
(resp., an epimorphism, an isomorphism), we call f a w-monomorphism (resp.,
a w-epimorphism, a w-isomorphism). A module B is said to be of finite type if
there exist a finitely generated free module F and a w-epimorphism f : F → B
[7, Definition 1.3]. If B is a GV-torsion-free module, then B is of finite type if
and only if there is a finitely generated submodule A of B such that Bw = Aw

[7, Proposition 1.2] and a fractional ideal I is said to be a t-finite-type fractional
ideal (resp., v-finite-type fractional deal) if there is a finitely generated fractional
ideal J contained in I such that It = Jt (resp., Iv = Jv).

The following is an SM domain analogue whose proof is similar to that of
the domain case.

Lemma 3.1. The following are equivalent for R.

(1) R satisfies ACC on semiregular w-ideals.
(2) Each semiregular w-ideal of R is of finite type.

(3) Each nonempty collection of semiregular w-ideals of R has maximal el-

ements.

(4) Each semiregular prime w-ideal of R is of finite type.

(5) Each semiregular ideal of R is of finite type.
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Let I be a w-ideal of R. If I is semiregular, then I is said to be a semiregular
w-ideal. In the following we define Q0-SM rings similarly to Q0-Mori rings.

Definition 3.2. A Q0-SM ring is defined to be a ring which satisfies ACC on
semiregular w-ideals and satisfies the restricted DCC on semiregular v-ideals.

T. Lucas has defined Q0-Mori rings in [5]: A Q0-Mori ring is defined to be
a ring which satisfies ACC on semiregular v-ideals and satisfies the restricted
DCC on semiregular v-ideals. Since v-ideals are w-ideals, a Q0-SM ring is a
Q0-Mori ring. Each semiregular fractional ideal of a Q0-Mori ring is a v-finite-
type fractional ideal ([5, Theorem 2.5 and Theorem 2.7]), so is each semiregular
fractional ideal of a Q0-SM ring. Here we also have that each semiregular ideal
of a Q0-SM ring is contained in at most finitely many semiregular maximal
w-ideals. In order to get this result, we need to define and discuss Q0-H-rings
and Q0-TV rings. A ring R is said to be a Q0-H-ring if I is a semiregular ideal
of R and I−1 = R, then there is some J ∈GV(R) such that J ⊆ I and a ring R
is said to be a Q0-TV ring if each semiregular t-fractional ideal is a semiregular
v-fractional ideal.

The following is an H-domain analogue whose proof is similar to that of the
domain case.

Lemma 3.3. The following assertions are equivalent for R.

(1) R is a Q0-H-ring.

(2) Each semiregular maximal w-ideal of R is a v-ideal.
(3) Let I be a semiregular ideal of R. If I−1 = R, then Iw = R.

Since semiregular maximal t-ideals are maximal w-ideals, we have that a
Q0-TV ring is a Q0-H-ring by Lemma 3.3.

Lemma 3.4. Let I be a semiregular v-ideal of R and let {Bi} be a nonempty

collection of v-ideals which contain I. Then (
∑

iB
−1
i )v ⊆ I−1.

Proof. Since I ⊆
⋂

iBi =
⋂

i(Bi)v = (
∑

i B
−1
i )−1, we have (

∑
iB

−1
i )v ⊆

I−1. �

Lemma 3.5. Let R be a Q0-TV ring, I be a semiregular t-ideal of R, and

M be a maximal w-ideal containing I. If {Bi} is the nonempty collection of

semiregular t-ideals of R which contain I but are not contained in M , then⋂
i Bi * M .

Proof. For B ∈ {Bi}, we have B * M . Since M is a maximal v-ideal, we
have (M + B)v = R. Hence M−1 ∩ B−1 = R. Let x ∈ M−1 \ R, where
x /∈ B−1 for every B ∈ {Bi}. Then we have (

∑
i B

−1
i )v ⊆ I−1 by Lemma 3.4,

so there is a finitely generated semiregular ideal I0 contained in I such that
I0(

∑
iB

−1
i )v ⊆ R. Hence I0

∑
iB

−1
i ⊆ R. Therefore

∑
i B

−1
i is a fractional

ideal of R. Note that (
∑

i B
−1
i )v = (

∑
i B

−1
i )t since R is a Q0-TV ring and that

x /∈ (
∑

iB
−1
i )v = (

∑
i B

−1
i )t. If not, there is a finitely generated submodule

F contained in
∑

i B
−1
i such that x ∈ Fv, so there are finitely many elements
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B1, . . . , Bn of {Bi} such that x ∈ (
∑n

j=1 B
−1
j )v, that is, x ∈ (

⋂n

j=1 Bj)
−1.

Since
⋂n

j=1 Bj is also an element of {Bi}, we can get a contradiction. We have

x /∈ (
∑

iB
−1
i )v = (

⋂
i Bi)

−1 and M−1 * (
⋂

iBi)
−1. Hence

⋂
i Bi * M . �

Lemma 3.6. Let R be a Q0-TV ring and let I be a semiregular t-ideal of R.

Then I is contained in at most finitely many semiregular maximal w-ideals.

Proof. Let {Mi} denote the collection of maximal w-ideals containing I, Ti =⋂
j 6=i Mj , and T =

∑
i Ti for each i. We can get Ti * Mi by Lemma 3.5, so T *

Mi for each i. And because I ⊆ T , we have T * M for each semiregular max-
imal w-ideal M . It follows that Tt = R, i.e., 1 ∈ Tt. Hencce there are finitely
many elements T1, . . . , Tn of {Ti} such that 1 ∈ (

∑n

i=1 Ti)t = (
∑n

i=1 Ti)v.
Let M1, . . . ,Mn be the maximal w-ideals corresponding to T1, . . . , Tn. Then
M1, . . . ,Mn are the all maximal w-ideals that contain I. If not, there is a
maximal w-ideal Mj which is not equal to each Mi (i = 1, 2, . . . , n) such that
I ⊆ Mj . Then Ti ⊆ Mj, i = 1, . . . , n. Hence

∑n

i=1 Ti ⊆ Mj . Therefore
1 ∈ (

∑n

i=1 Ti)t ⊆ Mj, which contradicts that Mj 6= R. �

Lemma 3.7. Let R be a Q0-SM ring. Then each semiregular maximal w-ideal
of R is a maximal v-ideal and each semiregular ideal of R is contained in at

most finitely many semiregular maximal w-ideals.

Proof. Let I be a semiregular t-fractional ideal of R. Then there is a finitely
generated semiregular fractional ideal J contained in I such that Iv = Jv. Thus
I = It ⊆ Iv = Jv = Jt ⊆ It = I, so I = Iv is a v-fractional ideal. It follows that
Q0-SM rings are Q0-TV rings. Hence each semiregular maximal w-ideal of R
is a maximal v-ideal. Because the semiregular maximal w-ideal containing I
contains It and It is contained in at most finitely many semiregular maximal
w-ideals by Lemma 3.6, I is contained in at most finitely many semiregular
maximal w-ideals. �

Definition 3.8. For R and S, R is said to be a Q0S-Noetherian ring if R
satisfies ACC on semiregular S-reducible ideals and satisfies the restricted DCC
on semiregular v-ideals. For a prime ideal P of R and S = R \ P , we say that
R is a Q0P -Noetherian ring if R is a Q0S-Noetherian ring.

Next we use the Q0-quotient ring R〈S〉 with respect to S to describe Q0-SM
rings.

Theorem 3.9. Let P be a prime w-ideal of R. If R is a Q0-SM ring, then

R〈P 〉 is a Q0P -Noetherian ring.

Proof. It is clear that R〈P 〉 satisfies ACC on semiregular P -reducible ideals by
Theorem 2.4.

Next we need to prove that R〈P 〉 satisfies the restricted DCC on semiregular
v-ideals.

Let J be a semiregular v-ideal of R〈P 〉 and let A = J ∩ R. We first show
that A is a semiregular v-ideal of R. We can prove that A is a semiregular
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ideal of R in the same way as in Theorem 2.4. Because each semiregular
ideal of a Q0-SM ring is a v-finite-type ideal, there is a finitely generated
semiregular ideal C contained in A such that Cv = Av. We may assume
C = (c1, c2, . . . , cn). Let u ∈ (R〈P 〉 : J). Then uJ ⊆ R〈P 〉. Since C ⊆ A ⊆ J ,
there is some s ∈ R \ P such that ucis ∈ R for each i (i = 1, 2, . . . , n). Then
us ⊆ (R : C) = (R : C)v = (R : Cv) = (R : Av). Thus usAv ⊆ R, which
implies uAv ⊆ R〈P 〉. We have (R〈P 〉 : J)Av ⊆ R〈P 〉. Therefore Av ⊆ J∩R = A
and A ⊆ Av is obvious. Hence A = Av, and so is a v-ideal of R.

To complete the proof, we need to show that J = A〈P 〉. For x ∈ A〈P 〉, we
have xs ∈ A ⊆ J for some s ∈ R \ P . Then xs(R〈P 〉 : J) ⊆ R〈P 〉. Thus
x(R〈P 〉 : J) ⊆ R〈P 〉, which implies x ∈ Jv = J . So A〈P 〉 ⊆ J . The containment
J ⊆ A〈P 〉 is clear by Lemma 2.2(1). Thus we have A〈P 〉 = J .

Let J1 ⊇ J2 ⊇ · · · ⊇ Jn ⊇ · · · be a descending chain of semiregular v-
ideals of R〈P 〉 with

⋂
Jn semiregular and let Ai = Ji ∩ R for each i. By the

proof above, J1 ∩ R ⊇ J2 ∩ R ⊇ · · · ⊇ Jn ∩ R ⊇ · · · is a descending chain
of semiregular v-ideals of R with

⋂
(Jn ∩ R) semiregular. Thus there is an

integer n such that Jk ∩ R = Jn ∩ R for each k ≥ n, i.e., Ak = An. We have
Jk = (Ak)〈P 〉 = (An)〈P 〉 = Jn. Then we have that {Jn} stabilizes. Hence R〈P 〉

is a Q0P -Neotherian ring. �

Corollary 3.10. R is a Q0-SM ring if and only if each semiregular ideal of R
is contained in at most finitely many semiregular maximal w-ideals and R〈M〉

is a Q0M -Noetherian ring for each semiregular maximal w-ideal M .

Proof. The sufficiency follows from Theorem 2.7, while the necessity follows
from Lemma 3.7 and Theorem 3.9. �

4. Examples

We know that an SM domain is a Mori domain, but the converse does not
hold. It is also known that a Q0-SM ring is a Q0-Mori ring. The first example
is provided to show that the converse of this fact does not hold yet. The last
two examples are provided to show the difference between Q0-SM rings and
SM rings.

Let D be a domain with the quotient field K, P be a nonempty set of prime
ideals of D where P−1

α 6= D for each Pα ∈ P , and Kα be the quotient field of
D/Pα. Then B =

⊕
Kα is a D-module. Let R = D(+)B be the idealization

of B in R, where for each r, s ∈ D and a, b ∈ B, (r, a) + (s, b) = (r + s, a + b)
and (r, a)(s, b) = (rs, as+ rb) (see [1, Section 25]). Let

F = {J | J is an ideal of D and for some finite subset A of J ,

A * Pα for each Pα ∈ P},

F0 be the collection of finitely generated ideals in F , and

E = {x ∈ K |xA ⊆ D for some A ∈ F0}.
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Lemma 4.1. Let the notation be as above. Then the following hold.

(1) (r, b) ∈ Z(D(+)B) if and only if r ∈ Pα for some Pα ∈ P.

(2) I is a semiregular ideal of R if and only if I = I0(+)B = I0R where

I0 ∈ F .

(3) If I = I0(+)B is a semiregular ideal of R, then HomR(I, R) ∼= I−1
0 (+)B.

(4) Q0(R)=E(+)B.

(5) J ∈GV(R) if and only if J = J0(+)B where J0 ∈GV(D).
(6) If I is a semiregular ideal of R, then IW = (I0)w(+)B where I0 ∈ F .

(7) If D is an SM domain, then R = D(+)B is a Q0-SM ring.

Proof. (1) Let r ∈ D and Pα ∈ P . If r /∈ Pα, then rKα = Kα. If r ∈ Pα, then
rcα = 0 for each cα ∈ Kα. Hence if r ∈ Pα, then (r, b) ∈ Z(D(+)B) for each
b ∈ B. Conversely, since D is a domain, if (r, b) ∈ Z(D(+)B), then r must be
an element of some Pα ∈ P .

(2), (3) See [3, Theorem 11].
(4) See [3, Theorem 11] and [4, Theorem 3].
(5) Let J ∈GV(R). Then J is a finitely generated semiregular ideal of R and

J = J0(+)B = J0R where J0 ∈ F by (2). Since J ∈GV(R), HomR(J,R) ∼= R.
By (3), HomR(J,R) ∼= J−1

0 (+)B. So J−1
0

∼= D. Since J is finitely generated,
J0 is a finitely generated ideal of D. We have J0 ∈GV(D).

Conversely, if J0 ∈GV(D), then J0 is a finitely generated ideal of D and J0 ∈
F0. If not, J0 ⊆ Pα for some Pα ∈ P . Then P−1

α ⊆ J−1
0 = D. Hence P−1

α = D,
which is a contradiction to the choice of Pα, so we have J = J0R = J0(+)B is
a finitely generated ideal of R and J = J0R = J0(+)B is a finitely generated
semiregular ideal of R by (2). By (3), HomR(J,R) ∼= J−1

0 (+)B = D(+)B = R.
So J ∈GV(R).

(6) Let I be a semiregular ideal of R. Then I = I0(+)B where I0 ∈ F . Let
x ∈ IW . Then there is some J ∈GV(R) such that xJ ⊆ I where J = J0(+)B
and J0 ∈ GV (D). Because IW ⊆ (Q0(R))W = Q0(R) = E(+)B ⊆ K(+)B,
x can be written as x = (e, b) where e ∈ E, b ∈ B. So eJ0 ⊆ I0. We have
x ∈ (I0)w(+)B. Conversely, if x ∈ (I0)w(+)B ⊆ Dw(+)B = D(+)B, x can be
written as x = (d, b) where d ∈ D and b ∈ B, so there is some J0 ∈GV(D) such
that dJ0 ⊆ I0. By (5), we have J = J0(+)B ∈GV(R). For each (a0, b0) ∈ J ,
(d, b)(a0, b0) = (da0, ba0 + db0) ∈ I0(+)B. Then (d, b)J ⊆ I0(+)B. Hence
x ∈ (I0(+)B)W = IW . Therefore IW = (I0)w(+)B.

(7) SinceD is an SM domain, thenD is a Mori domain. We haveD(+)Q0(B)
= D(+)B = R is a Q0-Mori ring by [5, Theorem 4.4], so R satisfies the re-
stricted DCC on semiregular v-ideals. Let I be a semiregular W -ideal of R.
Then I = (I0)w(+)B by (6). D is an SM domain, then D satisfies ACC on
w-ideals, so R satisfies ACC on semiregular W -ideals. Hence we have R is a
Q0-SM ring. �

Example 4.2. Let D be a domain, not a field and P = {0 | 0 is the zero ideal
of D}. Then F = {J | J is a nonzero ideal of D}. If D is a Mori domain but
not an SM domain, we claim that R = D(+)B is a Q0-Mori ring but not a
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Q0-SM ring. Since D is not an SM domain, there is an infinite ascending chain
{I0n} of w-ideals of D. By Lemma 4.1(2) and (6), {I0n(+)B} is an infinite
ascending chain of semiregular w-ideals of R. Thus R does not satisfy ACC on
semiregular w-ideals. Now we give a concrete example of a Q0-SM ring. Let D
denote the ring of integers Z and P=Spec(D) \ {2D}. Then R = D(+)B is a
Q0-SM ring.

The next example is provided to show that a Q0-SM ring is an SM ring, but
the converse does not hold.

Let K be a field and X = {Xn}∞n=1 = {X1, X2, . . . , Xn, . . . }, where each Xi

is an indeterminate over K. Let F denote the set of finite products of elements
from X . And for each positive integer m, let X [m] = {Xm

n }∞n=1.

Example 4.3 ([5, Example 3.5]). Let D = K[Y, Z,X [2],X [3], Y F , ZF ] and P
denote the set of primes of D which do not contain both Y and Z. Let R be
the A+B ring corresponding to D and P(see[1, Section 26]). Then R = T (R),
so R is the only regular ideal of R. Hence each regular ideal of R is of finite
type. Then R is an SM ring. Since R does not satisfy the restricted DCC on
semiregular v-ideals, we have that R is not a Q0-SM ring.

The last example is provided to show that SM rings which also satisfy the
restricted DCC on semiregular v-ideals may not be Q0-SM rings, i.e., ACC on
regular w-ideals does not imply ACC on semiregular w-ideals.

Example 4.4 ([5, Example 3.6]). Let Q = {qi =
pi+1
2pi

| p1 < p2 < · · · , each pi
is an odd prime} and T = {t ∈ Q | 0 ≤ t = m+a1q1+· · ·+anqn withm and each
ai nonnegative integers} and {Wi} be a set of indeterminates indexed over the
positive integers. For each integer k ≥ 0, let Wk = {

∏n

i>k W
ri
i | 0 ≤ ri ∈ Z, n >

k}. We assume that 1 ∈ Wk for each k. And let U = {UY rZs |U ∈ W0, r, s ∈ T
with r + s ≥ 1} and V = {V Y qi , V Zqi |V ∈ Wi, i ≥ 1}. Let D = K[Y, Z,U ,V ]
where K is a field and P denote the set of primes of D which do not contain
both Y and Z. Let R be the A + B ring corresponding to D and P . Then
R = T (R), so R is an SM ring and R satisfies the restricted DCC on semiregular
v-ideals. Let Q = (Y, Z,U)D,Q1 = Q + (Y q1W1)D + (Zq1W1)D, . . . , Qi =
Qi−1 + (Y qiWi)D + (ZqiWi)D. Then the chain QR ⊆ Q1R ⊆ Q2R ⊆ · · · is
a proper infinite ascending chain of semiregular v-ideals. Hence this chain is a
proper infinite ascending chain of semiregular w-ideals. Therefore R is not a
Q0-SM ring.
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